DeePMD-kit

DeepModeling

Apr 13, 2023

GETTING STARTED

1 Getting Started

1.1 Easyinstall
1.1.1 Install off-line packages
1.1.2 Imstall withconda
1.1.3 Imstall with docker
1.1.4 Install Python interface withpip
1.2 Preparedata withdpdata
1.3 Trainamodel
1.4 Freezeamodel
1.5 Testamodel. e e
1.6 Run MD With LAMMPS . .« o o oo e e e e e e e e e e
2 Installation
2.1 Easyinstall
2.1.1 Imstall off-line packages L
2.1.2 Imstall withconda e
2.1.3 Imstall with docker e
2.1.4 Install Python interface withpip
2.2 Install fromsource code e e
2.2.1 Install the python interface
2.2.2 Install the C++interface e
2.3 Install LAMMPS e e e
2.3.1 Imnstall LAMMPS’s DeePMD-kit module (built-inmode)
2.3.2 Install LAMMPS (plugin mode)
24 Install i-PI o
2.5 Install GROMACS with DeepMD
2.5.1 Patchsource code of GROMACS. it e
2.5.2 Compile GROMACS with deepmd-kit
2.6 Building conda packages. L
3 Data
3.1 System . ..o e
32 TFormatsofasystem
321 NumPyformat
3.2.2 HDF5formab. e e
3.2.3 Rawformatanddataconversion
3.3 Preparedata withdpdata
4 Model
4.1 Overall e e

0N~ UtU s W Www

10
10
11
11
12
15
17
17
18
18
19
19
19
19

21
21
23
23
23
24
24

27
27

4.2 Descriptor "se_e2_a" e e e e e 28
4.3 Descriptor "se_e2_r" . ..o e e e e e 29
4.4 Descriptor "se_e3" L e 29
4.5 Descriptor "se_atten" Lo e e e 30
4.5.1 DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular Simulation 30
452 Installation L 30
453 Introduction to new featuresof DPA-1 30
454 Dataformat 32
455 Trainingexample Lo e 33
4.6 Descriptor "hybrid" 33
4.7 Determine sel 34
4.8 Fitenergy o o e e e 34
4.8.1 Thefittingnetwork L 34
482 LOSS . v o e e 35
4.9 Fit tensor like Dipole and Polarizabilityot 35
4.9.1 Thefitting Network 36
492 LOSS . . oo 36
4.9.3 Training Data Preparation L oo o 37
494 Trainthe Model e 37
4.10 Typeembedding approach e 38
4.10.1 Typeembeddingnet e 38
4.11 Descriptor "se_a_mask" e e e e e e e e e e 39
4.12 Deep potential long-range (DPLR) o ot i it e e 41
4.12.1 Train a deep Wannier model for Wannier centroids 41
4.12.2 Train the DPLR model 42
4.12.3 Molecular dynamics simulation with DPLR 42
4.13 Deep Potential - Range Correction (DPRC) v o v v i vt i it e e 44
4.13.1 Trainingdata e e e e e 45
4.13.2 Training the DPRcmodel 45
4.13.3 Run MDsimulations L 46
Training 47
51 Trainamodel 47
52 Advancedoptions. e 48
5.21 Learningrate e 48
5.2.2 Training parameterso e 49
5.2.3 Options and environment variables 51
524 Adjustselofafrozenmodel. L o 52
5.3 Training Parameters L 52
54 Parallel trainingo 82
5.4.1 Tuninglearningrate L 82
542 Scaling test 82
5.4.3 HOWHOUSE o o it e e e e e 82
5.44 Logging 83
5.5 Multi-task training Lo 83
5.5.1 Perform the multi-task training Lo 83
5.5.2 Initialization from pretrained multi-task model 84
5.5.3 Share layers among energy fitting networks 85
56 TensorBoard Usage ot i e e 86
5.6.1 Highlighted features 86
5.6.2 How to use Tensorboard with DeePMD-kit 86
563 Examples. 87
5.6.4 Aftention 92
5.7 Known limitations of using GPUs 92

5.8

Finetune the pretrained model

6 Freeze and Compress
Freeze a model
Compressamodel L

6.1
6.2

7 Test
7.1
7.2

Test a model . .
Calculate Model Deviation e e

8 Inference
Python interface
C/C++ interface
CH+interface e

8.1
8.2

8.2.1
8.2.2
8.2.3

C interfa

CC o e

Header-only C++ library interface (recommended)

9 Command line interface

Named Arguments L
Valid subcommands e e
Sub-commands

9.1
9.2
9.3

9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.3.7
9.3.8
9.3.9
9.3.10
9.3.11

config .
transfer
train .
freeze .
test . .

COMPIESS © v v v v v e
doc-train-input
model-devi e e
convert-from

neighbor

Sstat L e e e e e e

train-nvnmd e e

10 Integrate with third-party packages

10.1 Usedeep potential with ASE
Run MD with LAMMPS
LAMMPS commands o0 e e e e e
Enable DeePMD-kit plugin (plugin mode)
pair styledeepmd
Compute tensorial properties L
Long-range interaction e

10.2
10.3

10.4
10.5

10.6

10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6

10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.6.6

Use of thi

e centroid/stress/atom to get the full 3x3 “atomic-virial”

Computationof heatflux.
Run path-integral MD with i-PI 00
Running MD with GROMACS
10.5.1 DP/MM Simulation e e e
10.5.2 All-atom DP Simulation e
Interfaces out of DeePMD-Kit e e

dpdata

OpenMM plugin for DeePMD-kit
AMBER interface to DeePMD-kit

DP-GEN
MLatom
ABACUS

95
95
95

99
99
100

101
101
102
102
102
103

105
105
105
105
105
106
106
107
108
109
110
111
111
112
113

115
115
115
116
116
116
117
118
118
119
119
120
120
123
124
124
124
124
124
124
124

11 Use NVNMD

11.1 Introduction o o o e e
11.2 Training o
11.2.1 Inputscript o e
11.2.2 Training o o o 0 e e e e e
11.3 Testing o o e e e
11.4 Running MD o0 0 e
11.4.1 Accountapplication e
11.4.2 Addingtask e
11.4.3 Cancelling calculation L
11.4.4 Downloading results
11.4.5 Deleting record e e
11.4.6 Clearingrecords o o i it e e

12 FAQs

12.1 How to tune Fitting/embedding-netsize ? o
12.1.1 AI203 . . o o
1212 Cu . oo o e e e e
12.1.3 Water o0 e
1204 Mg-Al. o oot e

12.2 How to control the parallelism of ajob?
12.2.1 MPI(optional) o
12.2.2 Parallelism between independent operators
12.2.3 Parallelism within an individual operators
12.2.4 Tune the performance

12.3 Do we need to set rcut < half boxsize? L oo

12.4 How toset sel?

12.5 Installation L
12.5.1 Inadequate versions of gec/g++ L
12.5.2 Build files left in DeePMD-kit

12.6 The temperature undulates violently during the early stagesof MD

12.7 MD: cannot run LAMMPS after installing a new version of DeePMD-kit

12.8 Model compatibility

12.9 Why does a model have low precision? L o

13 Find DeePMD-kit C/C++ library from CMake

14 Coding Conventions

141 Preface o o o
14.2 Rules oo
14.3 Whitespace e e e
14.4 Generaladvice
14.5 Writing documentationinthecode Lo L
14.6 Run pycodestyleon yourcode e
147 Runmypyonyour code oot ittt e e e e e e e
14.8 Run pydocstyleon yourcode
14.9 Runblackonyourcode

15 Create a model

15.1 Designanew component e
15.2 Register new arguments L
15.3 Packagenew codes

125
125
125
126
128
128
129
129
129
131
131
132
132

133
133
133
134
135
136
137
137
137
137
138
138
138
139
139
139
139
139
140
140
140
141
141

143

16 Atom Type Embedding
16.1 Overview
16.2 Preliminary . . .
16.3 Howtouse. . ..

16.4 Code Modification

16.4.1
16.4.2
16.4.3
16.4.4

17 Python API

trainer (train/trainer.py) o o e
model (model/ener.py)
embedding net (descriptor/se™.py) L
fitting net (fit/fener.py)

17.1 deepmd package
Subpackages
Submodules
deepmd.calculatormodule
deepmd.common module
deepmd.envmodule
deepmd.Impmodule

17.1.1
17.1.2
17.1.3
17.1.4
17.1.5
17.1.6

18 OP API

18.1 op module. . . .
18.2 op grads module

19 C++ API

19.1 Class Hierarchy .
19.2 File Hierarchy . .
19.3 Full APT

19.3.1

19.3.3

NamMESPACES .« « v v v e v e
19.3.2 Classesand Structs e

Functions

19.3.4 Typedefs o o

20 C API

20.1 Class Hierarchy .
20.2 File Hierarchy . .
20.3 FullAPI

20.3.1
20.3.2
20.3.3
20.3.4
20.3.5

21 Core API

NamMESPACES .« « v v v e v e v e e e e e e e e e e e e e e e e e e
Classes and Structs i e e e

Functions
Defines .

21.1 Class Hierarchy .
21.2 File Hierarchy . .
21.3 FullAPT

21.3.1
21.3.2
21.3.3
21.34
21.3.5
21.3.6
21.3.7

22 License

NameSPACES .« v v v v v e
Classes and Structs 0 e e

Unions .
Functions
Variables
Defines .
Typedefs

151
151
151
152
152
152
152
153
153

155
155
160
410
410
412
417
417

419
419
465

473
473
473
474
474
475
492
499

501
501
501
502
502
503
018
956
557

959
959
560
561
561
565
574
575
613
613
616

617

23 Authors and Credits

23.1 Package Contributors e

23.2 Other Credits
24 Logo
Bibliography
Python Module Index

Index

619
619
621

623

625

627

629

Vi

DeePMD-kit

DeePMD-kit is a package written in Python/C++, designed to minimize the effort required to build deep
learning-based models of interatomic potential energy and force field and to perform molecular dynamics
(MD). This brings new hopes to addressing the accuracy-versus-efficiency dilemma in molecular simulations.
Applications of DeePMD-kit span from finite molecules to extended systems and from metallic systems to
chemically bonded systems.

Important: The project DeePMD-kit is licensed under GNU LGPLv3.0. If you use this code in any future
publications, please cite this using Han Wang, Linfeng Zhang, Jiequn Han, and Weinan E. “DeePMD-kit: A
deep learning package for many-body potential energy representation and molecular dynamics.” Computer
Physics Communications 228 (2018): 178-184.

GETTING STARTED 1

https://github.com/deepmodeling/deepmd-kit/blob/master/LICENSE

DeePMD-kit

2 GETTING STARTED

CHAPTER
ONE

GETTING STARTED

In this text, we will call the deep neural network that is used to represent the interatomic interactions (Deep
Potential) the model. The typical procedure of using DeePMD-Kkit is

1.1 Easy install

There are various easy methods to install DeePMD-kit. Choose one that you prefer. If you want to build by
yourself, jump to the next two sections.

After your easy installation, DeePMD-kit (dp) and LAMMPS (1mp) will be available to execute. You can try
dp -hand lmp -h to see the help. mpirun is also available considering you may want to train models or run
LAMMPS in parallel.

Note: Note: The off-line packages and conda packages require the GNU C Library 2.17 or above. The GPU
version requires compatible NVIDIA driver to be installed in advance. It is possible to force conda to override
detection when installation, but these requirements are still necessary during runtime.

o Install off-line packages

Install with conda

Install with docker

Install Python interface with pip

1.1.1 Install off-line packages

Both CPU and GPU version offline packages are available in the Releases page.

Some packages are splited into two files due to size limit of GitHub. One may merge them into one after
downloading;:

cat deepmd-kit-2.1.1-cudall.6_gpu-Linux-x86_64.sh.0 deepmd-kit-2.1.1-cudall.6_gpu-Linux-x86_64.sh.
—1 > deepmd-kit-2.1.1-cudall.6_gpu-Linux-x86_64.sh

One may enable the environment using

[conda activate /path/to/deepmd-kit]

https://www.gnu.org/software/libc/
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-virtual.html#overriding-detected-packages
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-virtual.html#overriding-detected-packages
https://github.com/deepmodeling/deepmd-kit/releases

DeePMD-kit

1.1.2 Install with conda

DeePMD-kit is available with conda. Install Anaconda or Miniconda first.

Official channel

One may create an environment that contains the CPU version of DeePMD-kit and LAMMPS:

conda create -n deepmd deepmd-kit=*=*cpu libdeepmd=*=*cpu lammps -c https://conda.deepmodeling.com,,
—=—c defaults

Or one may want to create a GPU environment containing CUDA Toolkit:

conda create -n deepmd deepmd-kit=*=*gpu libdeepmd=*=*gpu lammps cudatoolkit=11.6 horovod -c,
—https://conda.deepmodeling.com -c defaults

One could change the CUDA Toolkit version from 10.2 or 11.6.
One may specify the DeePMD-kit version such as 2.1.1 using

conda create -n deepmd deepmd-kit=2.1.1=%cpu libdeepmd=2.1.1=*cpu lammps horovod -c https://conda.
—deepmodeling.com -c defaults

One may enable the environment using

[conda activate deepmd }

conda-forge channel

DeePMD-kit is also available on the conda-forge channel:

[conda create -n deepmd deepmd-kit lammps -c conda-forge }

The supported platform includes Linux x86-64, macOS x86-64, and macOS arm64. Read conda-forge FAQ
to learn how to install CUDA-enabled packages.

1.1.3 Install with docker

A docker for installing the DeePMD-kit is available here.

To pull the CPU version:

[docker pull ghcr.io/deepmodeling/deepmd-kit:2.1.1_cpu }
To pull the GPU version:

[docker pull ghcr.io/deepmodeling/deepmd-kit:2.1.1_cudall.6_gpu }
To pull the ROCm version:

[docker pull deepmodeling/dpmdkit-rocm:dp2.0.3-rocm4.5.2-tf2.6-1mp29Sep2021]

4 Chapter 1. Getting Started

https://github.com/conda/conda
https://www.anaconda.com/distribution/#download-section
https://docs.conda.io/en/latest/miniconda.html
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#binary-compatibility__table-toolkit-driver
https://conda-forge.org/
https://conda-forge.org/docs/user/tipsandtricks.html#installing-cuda-enabled-packages-like-tensorflow-and-pytorch
https://github.com/orgs/deepmodeling/packages/container/package/deepmd-kit

DeePMD-kit

1.1.4 Install Python interface with pip

If you have no existing TensorFlow installed, you can use pip to install the pre-built package of the Python
interface with CUDA 11 supported:

[pip install deepmd-kit[gpu,cull] }

cull is required only when CUDA Toolkit and cuDNN were not installed.
Or install the CPU version without CUDA supported:

[pip install deepmd-kit[cpul]

The LAMMPS module and the i-Pi driver are only provided on Linux and macOS. To install LAMMPS and/or
i-Pi, add 1mp and/or ipi to extras:

[pip install deepmd-kit[gpu,cull,lmp,ipil }

MPICH is required for parallel running.

Tt is suggested to install the package into an isolated environment. The supported platform includes Linux
x86-64 and aarch64 with GNU C Library 2.28 or above, macOS x86-64, and Windows x86-64. A specific
version of TensorFlow which is compatible with DeePMD-kit will be also installed.

Warning: If your platform is not supported, or want to build against the installed TensorFlow, or want
to enable ROCM support, please build from source.

1.2 Prepare data with dpdata

One can use a convenient tool dpdata to convert data directly from the output of first principle packages to
the DeePMD-kit format.

To install one can execute

[pip install dpdata }

An example of converting data VASP data in OUTCAR format to DeePMD-kit data can be found at

[$deepmd_source_dir/examples/data_conv }

Switch to that directory, then one can convert data by using the following python script

import dpdata

dsys = dpdata.LabeledSystem("OUTCAR")
dsys.to("deepmd/npy", "deepmd_data", set_size=dsys.get_nframes())

get_nframes () method gets the number of frames in the OUTCAR, and the argument set_size enforces that
the set size is equal to the number of frames in the system, viz. only one set is created in the system.

The data in DeePMD-kit format is stored in the folder deepmd_data.

A list of all supported data format and more nice features of dpdata can be found on the official website.

1.2. Prepare data with dpdata 5

https://github.com/deepmodeling/dpdata
https://www.vasp.at/
https://github.com/deepmodeling/dpdata#load-data
https://github.com/deepmodeling/dpdata

DeePMD-kit

1.3 Train a model

Several examples of training can be found in the examples directory:

[$ cd $deepmd_source_dir/examples/water/se_e2_a/ }

After switching to that directory, the training can be invoked by

[$ dp train input.json }

where input . json is the name of the input script.

By default, the verbosity level of the DeePMD-kit is INFO, one may see a lot of important information on
the code and environment showing on the screen. Among them two pieces of information regarding data
systems are worth special notice.

DEEPMD INFO ---Summary of DataSystem: training ------- o o ==

—

DEEPMD INFO found 3 system(s):

DEEPMD INFO system natoms bch_sz n_bch prob pbc
DEEPMD INFO ../data_water/data_0/ 192 1 80 0.250 T
DEEPMD INFO ../data_water/data_1/ 192 1 160 0.500 T
DEEPMD INFO ../data_water/data_2/ 192 1 80 0.250 T

DEEPMD INFO -—= -

—
DEEPMD INFO ---Summary of DataSystem: validation ------- o o ==
DEEPMD INFO found 1 system(s):

DEEPMD INFO system natoms bch_sz n_bch prob pbc
DEEPMD INFO ../data_water/data_3 192 1 80 1.000 T

DEEPMD INFO -

—

The DeePMD-kit prints detailed information on the training and validation data sets. The data sets are
defined by training data and validation data defined in the training section of the input script. The training
data set is composed of three data systems, while the validation data set is composed by one data system. The
number of atoms, batch size, the number of batches in the system and the probability of using the system
are all shown on the screen. The last column presents if the periodic boundary condition is assumed for the
system.

During the training, the error of the model is tested every disp freq training steps with the batch used to
train the model and with numb_btch batches from the validating data. The training error and validation
error are printed correspondingly in the file disp file (default is 1curve.out). The batch size can be set in the
input script by the key batch_size in the corresponding sections for the training and validation data set. An
example of the output

step rmse_val rmse_trn rmse_e_val Tmse_e_trn rmse_f_val rmse_f_trn ir
0 3.33e+01 3.41e+01 1.03e+01 1.03e+01 8.39e-01 8.72e-01 1.0e-03

100 2.57e+01 2.56e+01 1.87e+00 1.88e+00 8.03e-01 8.02e-01 1.0e-03

200 2.45e+01 2.56e+01 2.26e-01 2.21e-01 7.73e-01 8.10e-01 1.0e-03

300 1.62e+01 1.66e+01 5.01e-02 4.46e-02 5.11e-01 5.26e-01 1.0e-03
400 1.36e+01 1.32e+01 1.07e-02 2.07e-03 4.29e-01 4.19e-01 1.0e-03

500 1.07e+01 1.05e+01 2.45e-03 4.11e-03 3.38e-01 3.31e-01 1.0e-03

The file contains 8 columns, from left to right, which are the training step, the validation loss, training loss,
root mean square (RMS) validation error of energy, RMS training error of energy, RMS validation error of

6 Chapter 1. Getting Started

DeePMD-kit

force, RMS training error of force and the learning rate. The RMS error (RMSE) of the energy is normalized
by the number of atoms in the system. One can visualize this file with a simple Python script:

import numpy as np
import matplotlib.pyplot as plt

data = np.genfromtxt("lcurve.out", names=True)

for name in data.dtype.names[1:-1]:
plt.plot(datal'step'], data[name], label=name)

plt.legend()

plt.xlabel('Step"')

plt.ylabel('Loss"')

plt.xscale('symlog')

plt.yscale('log')

plt.grid()

plt.show()

Checkpoints will be written to files with the prefix save ckpt every save freq training steps.

Warning: It is warned that the example water data (in folder examples/water/data) is of very limited
amount, is provided only for testing purposes, and should not be used to train a production model.

1.4 Freeze a model

The trained neural network is extracted from a checkpoint and dumped into a protobuf(.pb) file. This process
is called “freezing” a model. The idea and part of our code are from Morgan. To freeze a model, typically
one does

£$ dp freeze -o graph.pb }

in the folder where the model is trained. The output model is called graph . pb.
In multi-task mode:

e This process will in default output several models, each of which contains the common descriptor and
one of the user-defined fitting nets in fitting net dict, let’s name it fitting_key, together frozen in
graph_{fitting_ key}.pb. Those frozen models are exactly the same as single-task output with fitting
net fitting_key.

e If you add -—united-model option in this situation, the total multi-task model will be frozen into one
unit graph. pb, which is mainly for multi-task initialization and can not be used directly for inference.

1.5 Test a model

The frozen model can be used in many ways. The most straightforward test can be performed using dp test.
A typical usage of dp test is

[dp test -m graph.pb -s /path/to/system -n 30 }

where -m gives the tested model, -s the path to the tested system and -n the number of tested frames. Several
other command line options can be passed to dp test, which can be checked with

1.4. Freeze a model 7

https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc

DeePMD-kit

£$ dp test --help }

An explanation will be provided

usage: dp test [-h] [-m MODEL] [-s SYSTEM] [-S SET_PREFIX] [-n NUMB_TEST]
[-r RAND_SEED] [--shuffle-test] [-d DETAIL_FILE]

optional arguments:
-h, --help show this help message and exit
-m MODEL, --model MODEL
Frozen model file to import
-s SYSTEM, --system SYSTEM
The system dir
-S SET_PREFIX, --set-prefix SET_PREFIX
The set prefix
-n NUMB_TEST, --numb-test NUMB_TEST
The number of data for test
-r RAND_SEED, --rand-seed RAND_SEED
The random seed
--shuffle-test Shuffle test data
—-d DETAIL_FILE, --detail-file DETAIL_FILE
The prefix to files where details of energy, force and virial accuracy/
—accuracy per atom will be written
-a, —-atomic Test the accuracy of atomic label, i.e. energy / temnsor (dipole, polar)

1.6 Run MD with LAMMPS

Running an MD simulation with LAMMPS is simpler. In the LAMMPS input file, one needs to specify the
pair style as follows

pair_style deepmd graph.pb
pair_coeff * * 0 H

where graph.pb is the file name of the frozen model. pair_coeff maps atom names (0 H) with LAMMPS
atom types (integers from 1 to Ntypes, i.e. 1 2).

8 Chapter 1. Getting Started

CHAPTER
TWO

INSTALLATION

2.1 Easy install

There are various easy methods to install DeePMD-kit. Choose one that you prefer. If you want to build by
yourself, jump to the next two sections.

After your easy installation, DeePMD-kit (dp) and LAMMPS (1mp) will be available to execute. You can try
dp -hand lmp -h to see the help. mpirun is also available considering you may want to train models or run
LAMMPS in parallel.

Note: Note: The off-line packages and conda packages require the GNU C Library 2.17 or above. The GPU
version requires compatible NVIDIA driver to be installed in advance. It is possible to force conda to override
detection when installation, but these requirements are still necessary during runtime.

o Install off-line packages
e Install with conda
e Install with docker

e Install Python interface with pip

2.1.1 Install off-line packages

Both CPU and GPU version offline packages are available in the Releases page.

Some packages are splited into two files due to size limit of GitHub. One may merge them into one after
downloading;:

cat deepmd-kit-2.1.1-cudall.6_gpu-Linux-x86_64.sh.0 deepmd-kit-2.1.1-cudall.6_gpu-Linux-x86_64.sh.
—1 > deepmd-kit-2.1.1-cudall.6_gpu-Linux-x86_64.sh

One may enable the environment using

[conda activate /path/to/deepmd-kit]

https://www.gnu.org/software/libc/
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#minor-version-compatibility
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-virtual.html#overriding-detected-packages
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-virtual.html#overriding-detected-packages
https://github.com/deepmodeling/deepmd-kit/releases

DeePMD-kit

2.1.2 Install with conda

DeePMD-kit is available with conda. Install Anaconda or Miniconda first.

Official channel

One may create an environment that contains the CPU version of DeePMD-kit and LAMMPS:

conda create -n deepmd deepmd-kit=*=*cpu libdeepmd=*=*cpu lammps -c https://conda.deepmodeling.com,,
—=—c defaults

Or one may want to create a GPU environment containing CUDA Toolkit:

conda create -n deepmd deepmd-kit=*=*gpu libdeepmd=*=*gpu lammps cudatoolkit=11.6 horovod -c,
—https://conda.deepmodeling.com -c defaults

One could change the CUDA Toolkit version from 10.2 or 11.6.
One may specify the DeePMD-kit version such as 2.1.1 using

conda create -n deepmd deepmd-kit=2.1.1=%cpu libdeepmd=2.1.1=*cpu lammps horovod -c https://conda.
—deepmodeling.com -c defaults

One may enable the environment using

[conda activate deepmd }

conda-forge channel

DeePMD-kit is also available on the conda-forge channel:

[conda create -n deepmd deepmd-kit lammps -c conda-forge }

The supported platform includes Linux x86-64, macOS x86-64, and macOS arm64. Read conda-forge FAQ
to learn how to install CUDA-enabled packages.

2.1.3 Install with docker

A docker for installing the DeePMD-kit is available here.

To pull the CPU version:

[docker pull ghcr.io/deepmodeling/deepmd-kit:2.1.1_cpu }
To pull the GPU version:

[docker pull ghcr.io/deepmodeling/deepmd-kit:2.1.1_cudall.6_gpu }
To pull the ROCm version:

[docker pull deepmodeling/dpmdkit-rocm:dp2.0.3-rocm4.5.2-tf2.6-1mp29Sep2021]

10 Chapter 2. Installation

https://github.com/conda/conda
https://www.anaconda.com/distribution/#download-section
https://docs.conda.io/en/latest/miniconda.html
https://docs.nvidia.com/deploy/cuda-compatibility/index.html#binary-compatibility__table-toolkit-driver
https://conda-forge.org/
https://conda-forge.org/docs/user/tipsandtricks.html#installing-cuda-enabled-packages-like-tensorflow-and-pytorch
https://github.com/orgs/deepmodeling/packages/container/package/deepmd-kit

DeePMD-kit

2.1.4 Install Python interface with pip

If you have no existing TensorFlow installed, you can use pip to install the pre-built package of the Python
interface with CUDA 11 supported:

[pip install deepmd-kit[gpu,cull] }

cull is required only when CUDA Toolkit and cuDNN were not installed.
Or install the CPU version without CUDA supported:

[pip install deepmd-kit[cpul]

The LAMMPS module and the i-Pi driver are only provided on Linux and macOS. To install LAMMPS and/or
i-Pi, add 1mp and/or ipi to extras:

[pip install deepmd-kit[gpu,cull,lmp,ipil }

MPICH is required for parallel running.

Tt is suggested to install the package into an isolated environment. The supported platform includes Linux
x86-64 and aarch64 with GNU C Library 2.28 or above, macOS x86-64, and Windows x86-64. A specific
version of TensorFlow which is compatible with DeePMD-kit will be also installed.

Warning: If your platform is not supported, or want to build against the installed TensorFlow, or want
to enable ROCM support, please build from source.

2.2 Install from source code

Please follow our GitHub webpage to download the latest released version and development version.

Or get the DeePMD-kit source code by git clone

cd /some/workspace
git clone --recursive https://github.com/deepmodeling/deepmd-kit.git deepmd-kit

The --recursive option clones all submodules needed by DeePMD-kit.

For convenience, you may want to record the location of the source to a variable, saying deepmd_source_dir
by

cd deepmd-kit
deepmd_source_dir="pwd"

2.2. Install from source code 11

https://github.com/deepmodeling/deepmd-kit
https://github.com/deepmodeling/deepmd-kit/tree/master
https://github.com/deepmodeling/deepmd-kit/tree/devel
https://git-scm.com/book/en/v2/Git-Tools-Submodules

DeePMD-kit

2.2.1 Install the python interface

Install Tensorflow’s python interface

First, check the python version on your machine

[python --version }

We follow the virtual environment approach to install TensorFlow’s Python interface. The full instruction
can be found on the official TensorFlow website. TensorFlow 1.8 or later is supported. Now we assume that
the Python interface will be installed to the virtual environment directory $tensorflow_venv

virtualenv -p python3 $tensorflow_venv
source $tensorflow_venv/bin/activate
pip install --upgrade pip

pip install --upgrade tensorflow

It is important that every time a new shell is started and one wants to use DeePMD-kit, the virtual environ-
ment should be activated by

[source $tensorflow_venv/bin/activate }

if one wants to skip out of the virtual environment, he/she can do

[deactivate }

If one has multiple python interpreters named something like python3.x, it can be specified by, for example

[virtualenv -p python3.8 $tensorflow_venv }

If one does not need the GPU support of DeePMD-kit and is concerned about package size, the CPU-only
version of TensorFlow should be installed by

[pip install --upgrade tensorflow-cpu }

To verify the installation, run

[python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))" }

One should remember to activate the virtual environment every time he/she uses DeePMD-kit.

One can also build the TensorFlow Python interface from source for custom hardware optimization, such as
CUDA, ROCM, or OneDNN support.

Install the DeePMD-kit’s python interface

Check the compiler version on your machine

[gcc --version }

The compiler GCC 4.8 or later is supported in the DeePMD-kit. Note that TensorFlow may have
specific requirements for the compiler version. It is recommended to use the same compiler version
as TensorFlow, which can be printed by python -c "import tensorflow;print(tensorflow.version.
COMPILER_VERSION)".

Execute

12 Chapter 2. Installation

https://www.tensorflow.org/install/pip
https://www.tensorflow.org/install/source

DeePMD-kit

cd $deepmd_source_dir

pip install .

One may set the following environment variables before executing pip:

Envi- Al- De- Usage
ronment lowec fault
variables value value
DP VARI cpu, cpu Build CPU variant or GPU variant with CUDA or ROCM support.
cuda
rocm
CUDA_TC Path De- The path to the CUDA toolkit directory. CUDA 7.0 or later is supported. NVCC
tected is required.
au-
to-
mat-
i_
cally
ROCM_Rt(Path De- The path to the ROCM toolkit directory.
tected
au-
to-
mat-
i-
cally
TEN- Path De- The path to TensorFlow Python library. By default the installer only finds Ten-
SOR- tected sorFlow under user site-package directory (site.getusersitepackages()) or
FLOW_R(au- system site-package directory (sysconfig.get_path("purelib")) due to lim-
to- itation of PEP-517. If not found, the latest TensorFlow (or the environment
mat- variable TENSORFLOW_VERSION if given) from PyPI will be built against.
i
cally
DP_ENAE 0,1 O Enable compilation optimization for the native machine’s CPU type. Do not en-

able it if generated code will run on different CPUs.

To test the installation, one should first jump out of the source directory

[cd /some/other/workspace

then execute

[dp -h

It will print the help information like

-h, --help

optional arguments:

usage: dp [-h] {train,freeze,test} ...

DeePMD-kit: A deep learning package for many-body potential energy
representation and molecular dynamics

show this help message and exit

(continues on next page)

2.2. Install from source code 13

https://peps.python.org/pep-0517/

DeePMD-kit

(continued from previous page)

Valid subcommands:
{train,freeze,test}

train train a model
freeze freeze the model
test test the model

Install horovod and mpi4py

Horovod and mpidpy are used for parallel training. For better performance on GPU, please follow the tuning
steps in Horovod on GPU.

With GPU, prefer NCCL as a communicator.
HOROVOD_WITHOUT_GLOO=1 HOROVOD_WITH_TENSORFLOW=1 HOROVOD_GPU_OPERATIONS=NCCL HOROVOD_NCCL_HOME=/
—path/to/nccl pip install horovod mpidpy

If your work in a CPU environment, please prepare runtime as below:

By default, MPI is used as communticator.
HOROVOD_WITHOUT_GLOO=1 HOROVOD_WITH_TENSORFLOW=1 pip install horovod mpi4py

To ensure Horovod has been built with proper framework support enabled, one can invoke the horovodrun
--check-build command, e.g.,

$ horovodrun --check-build
Horovod v0.22.1:

Available Frameworks:
[X] TensorFlow
[X] PyTorch
[1 MXNet

Available Controllers:
[X] MPI
[X] Gloo

Available Tensor Operations:
[X] NCCL
[] DDL
[1 ccL
[x] MPI
[X] Gloo

Since version 2.0.1, Horovod and mpidpy with MPICH support are shipped with the installer.
If you don’t install Horovod, DeePMD-kit will fall back to serial mode.

14 Chapter 2. Installation

https://github.com/horovod/horovod
https://github.com/mpi4py/mpi4py
https://github.com/horovod/horovod/blob/master/docs/gpus.rst

DeePMD-kit

2.2.2 Install the C++ interface

If one does not need to use DeePMD-kit with Lammps or I-Pi, then the python interface installed in the
previous section does everything and he/she can safely skip this section.

Install Tensorflow’s C++ interface (optional)

Since TensorFlow 2.12, TensorFlow C++ library (1ibtensorflow_cc) is packaged inside the Python library.
Thus, you can skip building TensorFlow C++ library manually. If that does not work for you, you can still
build it manually.

The C++ interface of DeePMD-kit was tested with compiler GCC >= 4.8. Tt is noticed that the I-Pi support
is only compiled with GCC >= 4.8. Note that TensorFlow may have specific requirements for the compiler
version.

First, the C++ interface of Tensorflow should be installed. It is noted that the version of Tensorflow should be
consistent with the python interface. You may follow the instruction or run the script $deepmd_source_dir/
source/install/build_tf.py to install the corresponding C++ interface.

Install DeePMD-kit’s C++ interface

Now go to the source code directory of DeePMD-kit and make a building place.

cd $deepmd_source_dir/source
mkdir build
cd build

T assume you have activated the TensorFlow Python environment and want to install DeePMD-kit into path
$deepmd_root, then execute CMake

[cmake -DUSE_TF_PYTHON_LIBS=TRUE -DCMAKE_INSTALL_PREFIX=$deepmd_root ..]

If you specify ~-DUSE_TF_PYTHON_LIBS=FALSE, you need to give the location where TensorFlow’s C++ inter-
face is installed to -DTENSORFLOW_ROOT=${tensorflow_root}.

One may add the following arguments to cmake:

2.2. Install from source code 15

DeePMD-kit

CMake Aurgements Al- Default Usage
lowed value
value
- Path - The Path to TensorFlow’s C++ interface.

DTENSORFLOW _R(

- Path - The Path where DeePMD-kit will be installed.
DCMAKE INSTALL

- TRUE FALSE If TRUE, Build GPU support with CUDA toolkit.
DUSE_CUDA _TOOL: or

FALSE
= Path De- The path to the CUDA toolkit directory. CUDA 7.0 or later is
DCUDA_TOOLKIT 1 tected supported. NVCC is required.
auto-
mati-
cally

= TRUE FALSE If TRUE, Build GPU support with ROCM toolkit.
DUSE_ROCM_TOOL or

FALSE

= Path De- The path to the ROCM toolkit directory.
DCMAKE_HIP_COM tected

auto-

mati-

cally
- Path - Only neccessary for LAMMPS plugin mode. The path to the
DLAMMPS SOURCE LAMMPS source code. LAMMPS 8 Apr2021 or later is supported.

If not assigned, the plugin mode will not be enabled.
= TRUE FALSE If TRUE, Build C++ interface with TensorFlow’s Python li-

DUSE_TF PYTHON or braries(TensorFlow’s Python Interface is required). And there’s
FALSE no need for building TensorFlow’s C++ interface.

= TRUE FALSE Enable compilation optimization for the native machine’s CPU

DENABLE NATIVE or type. Do not enable it if generated code will run on different
FALSE CPUs.

If the CMake has been executed successfully, then run the following make commands to build the package:

make -j4
make install

Option -j4 means using 4 processes in parallel. You may want to use a different number according to your
hardware.

If everything works fine, you will have the following executable and libraries installed in $deepmd_root/bin
and $deepmd_root/1lib

$ 1s $deepmd_root/bin

dp_ipi dp_ipi_low

$ 1s $deepmd_root/lib

libdeepmd_cc_low.so libdeepmd_ipi_low.so libdeepmd_lmp_low.so libdeepmd_low.so U
—1ibdeepmd_op_cuda.so libdeepmd_op.so

libdeepmd_cc.so libdeepmd_ipi.so libdeepmd_lmp.so libdeepmd_op_cuda_low.so |,

—1libdeepmd_op_low.so libdeepmd.so

16 Chapter 2. Installation

DeePMD-kit

2.3 Install LAMMPS

There are two ways to install LAMMPS: the built-in mode and the plugin mode. The built-in mode builds
LAMMPS along with the DeePMD-kit and DeePMD-kit will be loaded automatically when running LAMMPS.
The plugin mode builds LAMMPS and a plugin separately, so one needs to use plugin load command to load
the DeePMD-kit’s LAMMPS plugin library.

2.3.1 Install LAMMPS’s DeePMD-kit module (built-in mode)

Before following this section, DeePMD-kit C++ interface should have be installed.

DeePMD-kit provides a module for running MD simulations with LAMMPS. Now make the DeePMD-kit mod-
ule for LAMMPS.

cd $deepmd_source_dir/source/build
make lammps

DeePMD-kit will generate a module called USER-DEEPMD in the build directory. If you need the low-precision
version, move env_low.sh to env.sh in the directory. Now download the LAMMPS code, and uncompress it.

cd /some/workspace
wget https://github.com/lammps/lammps/archive/stable_23Jun2022_update3.tar.gz
tar xf stable_23Jun2022_update3.tar.gz

The source code of LAMMPS is stored in the directory lammps-stable_23Jun2022_update3. Now go into the
LAMMPS code and copy the DeePMD-kit module like this

cd lammps-stable_23Jun2022_update3/src/

cp -r $deepmd_source_dir/source/build/USER-DEEPMD .
make yes-kspace

make yes-extra-fix

make yes-user-deepmd

You can enable any other package you want. Now build LAMMPS

[make mpi -j4 }

If everything works fine, you will end up with an executable 1lmp_mpi.

[./1lmp_mpi -h]

The DeePMD-kit module can be removed from the LAMMPS source code by

[make no-user-deepmd }

2.3. Install LAMMPS 17

DeePMD-kit

2.3.2 Install LAMMPS (plugin mode)

Starting from 8Apr2021, LAMMPS also provides a plugin mode, allowing one to build LAMMPS and a plugin
separately.

Now download the LAMMPS code (8Apr2021 or later), and uncompress it:

cd /some/workspace
wget https://github.com/lammps/lammps/archive/stable_23Jun2022_update3.tar.gz
tar xf stable_23Jun2022_update3.tar.gz

The source code of LAMMPS is stored in the directory lammps-stable_23Jun2022_update3. The directory
of the source code should be specified as the CMAKE argument LAMMPS_SOURCE_ROOT during installation of
the DeePMD-kit C++ interface. Now go into the LAMMPS directory and create a directory called build

mkdir -p lammps-stable_23Jun2022_update3/build/
cd lammps-stable_23Jun2022_update3/build/

Now build LAMMPS. Note that PLUGIN and KSPACE packages must be enabled, and BUILD_SHARED_LIBS must
be set to yes. You can install any other package you want.

cmake -D PKG_PLUGIN=0ON -D PKG_KSPACE=0ON -D LAMMPS_INSTALL_RPATH=ON -D BUILD_SHARED_LIBS=yes -D
—CMAKE_INSTALL_PREFIX=${deepmd_root} -D CMAKE_INSTALL_LIBDIR=1ib -D CMAKE_INSTALL_FULL_LIBDIR=
—{deepmd_root}/1ib ../cmake

make -j4

make install

If everything works fine, you will end up with an executable ${deepmd_root}/bin/1lmp.

[deepmd_root }/bin/lmp -h

Note: If ${tensorflow_root}, ${deepmd_root}, or the path to TensorFlow Python package if applicable
is different from the prefix of LAMMPS, you need to append the library path to RUNPATH of 1iblammps. so.
For example,

[patchelf --set-rpath "${tensorflow_root//1lib" liblammps.so

2.4 Install i-Pl

The i-PI works in a client-server model. The i-PI provides the server for integrating the replica positions
of atoms, while the DeePMD-kit provides a client named dp_ipi that computes the interactions (including
energy, forces and virials). The server and client communicate via the Unix domain socket or the Internet
socket. Full documentation for i-PI can be found here. The source code and a complete installation guide for
i-PI can be found here. To use i-PI with already existing drivers, install and update using Pip:

[pip install -U i-PI

Test with Pytest:

pip install pytest
pytest --pyargs ipi.tests

18 Chapter 2. Installation

https://man7.org/linux/man-pages/man8/ld.so.8.html
http://ipi-code.org/
https://github.com/i-pi/i-pi

DeePMD-kit

2.5 Install GROMACS with DeepMD

Before following this section, DeePMD-kit C++ interface should have be installed.

2.5.1 Patch source code of GROMACS

Download the source code of a supported GROMACS version (2020.2) from
https://manual.gromacs.org/2020.2/download.html. Run the following command:

export PATH=$PATH:$deepmd_kit_root/bin
dp_gmx_patch -d $gromacs_root -v $version -p

where deepmd_kit_root is the directory where the latest version of DeePMD-kit is installed, and
gromacs_root refers to the source code directory of GROMACS. And version represents the version of GRO-
MACS, where only 2020.2 is supported now. If attempting to patch another version of GROMACS you will
still need to set version to 2020.2 as this is the only supported version, we cannot guarantee that patching
other versions of GROMACS will work.

2.5.2 Compile GROMACS with deepmd-kit

The C++ interface of Deepmd-kit 2.x and TensorFlow 2.x arerequired. And be aware that only DeePMD-
kit with high precision is supported now since we cannot ensure single precision is enough for a GROMACS
simulation. Here is a sample compile script:

p
#!/bin/bash

export CC=/usr/bin/gcc

export CXX=/usr/bin/g++

export CMAKE_PREFIX_PATH="/path/to/fftw-3.3.9" # fftw librarties
mkdir build

cd build

cmake3 .. -DCMAKE_CXX_STANDARD=14 \ # not required, but c++14 seems to be more compatible withy
—higher version of tensorflow
-DGMX_MPI=0ON \
-DGMX_GPU=CUDA \ # Gromacs on ROCm has not been fully developed yet
-DCUDA_TOOLKIT_ROOT_DIR=/path/to/cuda \
-DCMAKE_INSTALL_PREFIX=/path/to/gromacs-2020.2-deepmd
make -j
make install

L

2.6 Building conda packages

One may want to keep both convenience and personalization of the DeePMD-kit. To achieve this goal, one
can consider building conda packages. We provide building scripts in deepmd-kit-recipes organization. These
building tools are driven by conda-build and conda-smithy.

For example, if one wants to turn on MPII0 package in LAMMPS, go to lammps-feedstock repository and
modify recipe/build.sh. -D PKG_MPII0=0FF should be changed to -D PKG_MPII0=0N. Then go to the main
directory and execute

2.5. Install GROMACS with DeepMD 19

https://github.com/deepmd-kit-recipes/
https://github.com/conda/conda-build
https://github.com/conda-forge/conda-smithy
https://github.com/deepmd-kit-recipes/lammps-feedstock/

DeePMD-kit

[./build—locally.py

This requires that Docker has been installed. After the building, the packages will be generated in
build_artifacts/linux-64 and build_artifacts/noarch, and then one can install then executing

conda create -n deepmd lammps -c file:///path/to/build_artifacts -c https://conda.deepmodeling.com,,
—=-c nvidia

One may also upload packages to one’s Anaconda channel, so they can be installed on other machines:

anaconda upload /path/to/build_artifacts/linux-64/*.tar.bz2 /path/to/build_artifacts/noarch/*.tar.
—bz2

20 Chapter 2. Installation

CHAPTER

THREE

DATA

In this section, we will introduce how to convert the DFT-labeled data into the data format used by DeePMD-
kit.

The DeePMD-kit organizes data in systems. Each system is composed of a number of frames. One may
roughly view a frame as a snapshot of an MD trajectory, but it does not necessarily come from an MD simu-
lation. A frame records the coordinates and types of atoms, cell vectors if the periodic boundary condition is
assumed, energy, atomic forces and virials. It is noted that the frames in one system share the same number
of atoms with the same type.

3.1 System

DeePMD-kit takes a system as the data structure. A snapshot of a system is called a frame. A system may
contain multiple frames with the same atom types and numbers, i.e. the same formula (like H20). To contains
data with different formulas, one usually needs to divide data into multiple systems, which may sometimes
result in sparse-frame systems. See a new system format to further combine different systems with the same
atom numbers, when training with descriptor se_atten.

A system should contain system properties, input frame properties, and labeled frame properties. The system
property contains the following property:

ID Prop- Raw Re- Shap Description
erty file quire

type Atom type. Re- Nato Integers that start with 0. If both the training parameter type map is set

type quire and type_map.raw is provided, the system atom type should be mapped
in- to type_map.raw in type.raw and will be mapped to the model atom type
dexes when training; otherwise, the system atom type will be always mapped to

the model atom type (whether type map is set or not)
type Atom type Op- Ntyr Atom namesthat map to atom type, which is unnecessary to be contained

type tiona in the periodic table. Only works when the training parameter type map
name is set
nopk Non- nopk Op- 1 If True, this system is non-periodic; otherwise it’s periodic
perioc tiona
Sys-
tem

The input frame properties contain the following property, the first axis of which is the number of frames:

21

DeePMD-kit

ID Property Raw Unit Re- Shape Description
file quired/Optic
coord Atomic coordinates co- A Required Nframes *
ord.raw Natoms * 3
box Boxes box.raw A Required Nframes*3* in the order XX XY XZ
if periodic 3 YX YY YZ ZX ZY ZZ
fparam Extra frame parameters fparam Any Optional Nframes *
Any
aparam Extra atomic parameters aparam Any Optional Nframes *
aparam ¥
Any
numb ¢ Each frame is copied by prob.rar 1 Optional Nframes Integer; Defaultis 1 for

the numb_copy (int) times

all frames

The labeled frame properties are listed as follows, all of which will be used for training if and only if the loss
function contains such property:

ID Property Raw file Unit Shape Description
energy Frame energies energy.raw eV Nframes
force Atomic forces force.raw eV/A Nframes *
Natoms * 3
virial Frame virial virial.raw eV Nframes * 9 in the order XX XY XZ YX
YY YZ ZX ZY ZZ
atom_ener Atomic energies atom_ener.raw eV Nframes *
Natoms
atom_pref Weights of atom_pref.raw 1 Nframes *
atomic forces Natoms
dipole Frame dipole dipole.raw Any Nframes * 3
atomic_dipole Atomic dipole atomic_dipole.rav Any Nframes *
Natoms * 3
polarizability =~ Frame polariz- polarizabil- Any Nframes™*9 in the order XX XY XZ YX
ability ity.raw YY YZ ZX ZY ZZ

atomic polariz Atomic polariz- atomic polarizabi Any Nframes * in the order XX XY XZ YX
ability Natoms * 9 YY YZ ZX ZY ZZ

In general, we always use the following convention of units:
Property Unit
Time ps
Length A
Energy eV
Force eV/A
Virial eV
Pressure Bar

22

Chapter 3. Data

DeePMD-kit

3.2 Formats of a system

Two binary formats, NumPy and HDF5, are supported for training. The raw format is not directly supported,

but a tool is provided to convert data from the raw format to the NumPy format.

3.2.1 NumPy format

In a system with the Numpy format, the system properties are stored as text files ending with .raw, such
as type.raw and type_map.raw, under the system directory. If one needs to train a non-periodic system,
an empty nopbc file should be put under the system directory. Both input and labeled frame properties are
saved as the NumPy binary data (NPY) files ending with .npy in each of the set.* directories. Take an

example, a system may contain the following files:

set

set.
set.
set.

type.raw
type_map.raw
nopbc

set.
set.

000/coord.npy
000/energy .npy
000/force.npy
001/coord.npy
001/energy .npy

.001/force.npy

We assume that the atom types do not change in all frames. It is provided by type.raw, which has one line
with the types of atoms written one by one. The atom types should be integers. For example the type.raw

of a system that has 2 atoms with 0 and 1:

01

$ cat type.raw

Sometimes one needs to map the integer types to atom names. The mapping can be given by the file

type_map.raw. For example

0 H

$ cat type_map.raw

The type 0 is named by "0" and the type 1 is named by "H".

For training models with descriptor se_atten, a new system format is supported to put together the frame-

sparse systems with the same atom number.

3.2.2 HDF5 format

A system with the HDF5 format has the same structure as the Numpy format, but in an HDF5 file, a system
is organized as an HDF5 group. The file name of a Numpy file is the key in an HDFS5 file, and the data is the

value of the key. One needs to use # in a DP path to divide the path to the HDF5 file and the HDF5 path:

[/path/to/data.hde#/HQU

)

Here, /path/to/data.hdf5 is the file path and /H20 is the HDF5 path. All HDF5 paths should start with /.

There should be some data in the H20 group, such as /H20/type .raw and /H20/set.000/force.npy.

An HDF5 file with a large number of systems has better performance than multiple NumPy files in a large
cluster.

3.2. Formats of a system

23

https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html#npy-format
https://docs.h5py.org/en/stable/high/group.html

DeePMD-kit

3.2.3 Raw format and data conversion

A raw file is a plain text file with each information item written in one file and one frame written on one line.
It’s not directly supported, but we provide a tool to convert them.

In the raw format, the property of one frame is provided per line, ending with .raw. Take an example,
the default files that provide box, coordinate, force, energy and virial are box.raw, coord.raw, force.raw,
energy.raw and virial.raw, respectively. Here is an example of force.raw:

$ cat force.raw

-0.724 2.039 -0.951 0.841 -0.464 0.363
6.737 1.554 -5.587 -2.803 0.062 2.222
-1.968 -0.163 1.020 -0.225 -0.789 0.343

This force.raw contains 3 frames with each frame having the forces of 2 atoms, thus it has 3 lines and 6
columns. Each line provides all the 3 force components of 2 atoms in 1 frame. The first three numbers are
the 3 force components of the first atom, while the second three numbers are the 3 force components of the
second atom. Other files are organized similarly. The number of lines of all raw files should be identical.

One can use the script $deepmd_source_dir/data/raw/raw_to_set.sh to convert the prepared raw files to
the NumPy format. For example, if we have a raw file that contains 6000 frames,

$ 1s

box.raw coord.raw energy.raw force.raw type.raw virial.raw
$ $deepmd_source_dir/data/raw/raw_to_set.sh 2000

nframe is 6000

nline per set is 2000

will make 3 sets

making set O ...

making set 1 ...

making set 2 ...

$ 1s

box.raw coord.raw energy.raw force.raw set.000 set.001 set.002 type.raw virial.raw

It generates three sets set.000, set.001 and set.002, with each set containing 2000 frames in the Numpy
format.

3.3 Prepare data with dpdata

One can use a convenient tool dpdata to convert data directly from the output of first principle packages to
the DeePMD-kit format.

To install one can execute

[pip install dpdata

An example of converting data VASP data in OUTCAR format to DeePMD-kit data can be found at

[$deepmd_source_dir/examples/data_conv

Switch to that directory, then one can convert data by using the following python script

import dpdata

dsys = dpdata.LabeledSystem("OUTCAR")
dsys.to("deepmd/npy", "deepmd_data", set_size=dsys.get_nframes())

24 Chapter 3. Data

https://github.com/deepmodeling/dpdata
https://www.vasp.at/

DeePMD-kit

get_nframes () method gets the number of frames in the OUTCAR, and the argument set_size enforces that
the set size is equal to the number of frames in the system, viz. only one set is created in the system.

The data in DeePMD-kit format is stored in the folder deepmd_data.

A list of all supported data format and more nice features of dpdata can be found on the official website.

3.3. Prepare data with dpdata 25

https://github.com/deepmodeling/dpdata#load-data
https://github.com/deepmodeling/dpdata

DeePMD-kit

26

Chapter 3. Data

CHAPTER
FOUR

MODEL

4.1 Overall

A model has two parts, a descriptor that maps atomic configuration to a set of symmetry invariant features,
and a fitting net that takes descriptor as input and predicts the atomic contribution to the target physical
property. It’s defined in the model section of the input. json, for example,

"model": {
"type_map" : [uou s ||H||] ,
"descriptor" :{
},
"fitting_net" : {
}
}

The two subsections, descriptor and fitting net, define the descriptor and the fitting net, respectively.

The type map is optional, which provides the element names (but not necessarily same as the actual name
of the element) of the corresponding atom types. A water model, as in this example, has two kinds of atoms.
The atom types are internally recorded as integers, e.g., 0 for oxygen and 1 for hydrogen here. A mapping
from the atom type to their names is provided by type map.

DeePMD-kit implements the following descriptors:

1. se_e2_a: DeepPot-SE constructed from all information (both angular and radial) of atomic configura-
tions. The embedding takes the distance between atoms as input.

2. se_e2_r: DeepPot-SE constructed from radial information of atomic configurations. The embedding
takes the distance between atoms as input.

3. se_e3: DeepPot-SE constructed from all information (both angular and radial) of atomic configura-
tions. The embedding takes angles between two neighboring atoms as input.

4. se_a_mask: DeepPot-SE constructed from all information (both angular and radial) of atomic configu-
rations. The input frames in one system can have a varied number of atoms. Input particles are padded
with virtual particles of the same length.

5. loc_frame: Defines a local frame at each atom and compute the descriptor as local coordinates under
this frame.

6. hybrid: Concate a list of descriptors to form a new descriptor.

The fitting of the following physical properties is supported

27

DeePMD-kit

. ener: Fit the energy of the system. The force (derivative with atom positions) and the virial (derivative

with the box tensor) can also be trained.

. dipole: The dipole moment.

. polar: The polarizability.

4.2 Descriptor "se_e2_a"

The notation of se_e2_a is short for the Deep Potential Smooth Edition (DeepPot-SE) constructed from all
information (both angular and radial) of atomic configurations. The e2 stands for the embedding with two-
atoms information. This descriptor was described in detail in the DeepPot-SE paper.

Note that it is sometimes called a “two-atom embedding descriptor” which means the input of the embed-
ding net is atomic distances. The descriptor does encode multi-body information (both angular and radial

information of neighboring atoms).

In this example, we will train a DeepPot-SE model for a water system. A complete training input script of

this example can be found in the directory.

[$deepmd_source_dir/examples/water/se_eQ_a/input.json

1

With the training input script, data are also provided in the example directory. One may train the model

with the DeePMD-kit from the directory.

The construction of the descriptor is given by section descriptor. An example of the descriptor is provided as

follows

"descriptor" :{
"type": "se_e2_a",
"rcut_smth": 0.50,
"rcut": 6.00,
"sel": [46, 92],
"neuron": [25, 50, 100],
"type_one_side": true,
"axis_neuron": 16,
"resnet_dt": false,
"seed": 1

}

The type of the descriptor is set to "se_e2_a".
rcut is the cut-off radius for neighbor searching, and the rcut smth gives where the smoothing starts.

sel gives the maximum possible number of neighbors in the cut-off radius. It is a list, the length of which
is the same as the number of atom types in the system, and sel[i] denotes the maximum possible
number of neighbors with type i.

The neuron specifies the size of the embedding net. From left to right the members denote the sizes of
each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size
of the inner layer, then the inner layer is copied and concatenated, then a ResNet architecture is built
between them.

If the option type one_side is set to true, the embedding network parameters vary by types of neigh-
bor atoms only, so there will be Niypes sets of embedding network parameters. Otherwise, the embed-
ding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be

N pes sets of embedding network parameters.

28

Chapter 4. Model

https://arxiv.org/abs/1805.09003
https://arxiv.org/abs/1512.03385

DeePMD-kit

e The axis neuron specifies the size of the submatrix of the embedding matrix, the axis matrix as ex-
plained in the DeepPot-SE paper

o If the option resnet_dt is set to true, then a timestep is used in the ResNet.

e seed gives the random seed that is used to generate random numbers when initializing the model pa-
rameters.

4.3 Descriptor "se_e2_r"

The notation of se_e2_r is short for the Deep Potential Smooth Edition (DeepPot-SE) constructed from the
radial information of atomic configurations. The e2 stands for the embedding with two-atom information.

A complete training input script of this example can be found in the directory

[$deepmd_source_dir/examples/water/se_e2_r/input.json }

The training input script is very similar to that of se_e2_a. The only difference lies in the descriptor section

"descriptor": {
"type": "se_e2_r",
"sel": [46, 921,
"rcut_smth": 0.50,
"rcut": 6.00,
"neuron" : [5, 10, 20],
"resnet_dt": false,
"seed": 1,
" _comment": " that's all"

Yo

The type of the descriptor is set by the key type.

4.4 Descriptor "se_e3"

The notation of se_e3 is short for the Deep Potential Smooth Edition (DeepPot-SE) constructed from all
information (both angular and radial) of atomic configurations. The embedding takes angles between two
neighboring atoms as input (denoted by e3).

A complete training input script of this example can be found in the directory

£$deepmd_source_dir/examples/water/se_eB/input.json }

The training input script is very similar to that of se_e2 a. The only difference lies in the descriptor
<model/descriptor> section

"descriptor": {
"type": "se_e3",
"sel": [40, 80],
"rcut_smth": 0.50,
"rcut": 6.00,
"neuron": [2, 4, 8],
"resnet_dt": false,
"seed": 1,

(continues on next page)

4.3. Descriptor "se_e2_r" 29

https://arxiv.org/abs/1805.09003

DeePMD-kit

(continued from previous page)

"_comment": " that's all"

}’

The type of the descriptor is set by the key type.

4.5 Descriptor "se_atten"

4.5.1 DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular
Simulation

|
. - - | -
Atom types Relative coordinates | ‘@‘ (@)
i |

I \
| \
(i } Jf‘ : 2@yr—70 (g \
ke] G £ IE i N TCTD) | \
‘“""“l’““t"‘“ S P 2] LOO I @) . T : \
@> @"‘"f'?""f"l‘ I T | | Linear Linear Linear \ © L , -
Embedding | ‘ | NED € \ ™ ~@ T =g\ O\
net | Linear | | | \ ® | AR
* | ¢ A ‘MatMul \ ” N
¢ I - | o - N\
) Scal \ ®) My
Gated ! g (b)l i - ®] ey
self-attention I, A | \ S agd fe
‘mechanism Softmax \ (SN Co
g;l | ;(g“')Ti'(fe‘)’g“,(- | \ B Ik ~& N
+ I lﬂal 1‘ : \ < C/ F,
MatMul \ N =
| I (@R) ! MatMul \ SN 0 —
R (RYTE ! T = | | \ - @ ~—
NTRI(ROT G \ -
GHTRI@RYTG | | o = : e
| fat | Tiress | e y
Fitting | | il ~~ Q,/
~— net | xk | NG \ /
e{‘ Atomic | | * e, N //
i energy (a)l G (d)1 Gt (c) ~— @ /
I l ~ pd
Scalar Element-wise % Linear Matrix N
= addition Linear o oion MAMUL 1 yipication Feed forward ~_ o
Vector i ; ! ! FEN : - 7
= © Hlementwise | gy Scaleand g oo Softmax network ~ P4
Matrix multiplication ~ SCAUE "y orygtization PO operation oy s
/
~/

Here we propose DPA-1, a Deep Potential model with a novel attention mechanism, which is highly effective
for representing the conformation and chemical spaces of atomic systems and learning the PES.

See this paper for more information. DPA-1 is implemented as a new descriptor "se_atten" for model train-
ing, which can be used after simply editing the input.json.

4.5.2 Installation

Follow the standard installation of Python interface in the DeePMD-kit. After that, you can smoothly use
the DPA-1 model with the following instructions.

4.5.3 Introduction to new features of DPA-1

Next, we will list the detailed settings in input.json and the data format, especially for large systems with
dozens of elements. An example of DPA-1 input can be found here.

30 Chapter 4. Model

https://arxiv.org/abs/2208.08236

DeePMD-kit

Descriptor "se_atten"

The notation of se_atten is short for the smooth edition of Deep Potential with an attention mechanism.
This descriptor was described in detail in the DPA-1 paper and the images above.

In this example, we will train a DPA-1 model for a water system. A complete training input script of this
example can be found in the directory:

[$deepmd_source_dir/examples/water/se_atten/input.json

l

With the training input script, data are also provided in the example directory. One may train the model
with the DeePMD-kit from the directory.

An example of the DPA-1 descriptor is provided as follows

"descriptor" :{

"type": "se_atten",
"rcut_smth": 0.50,

"rcut": 6.00,
"sel": 120,
"neuron": [25, 50, 100],
"axis_neuron": 16,
"resnet_dt": false,

"attn": 128,

"attn_layer": 2y
"attn_mask": false,
"attn_dotr": true,

"seed": 1

}

The type of the descriptor is set to "se_atten", which will use DPA-1 structures.
rcut is the cut-off radius for neighbor searching, and the rcut_smth gives where the smoothing starts.

sel gives the maximum possible number of neighbors in the cut-off radius. It is an int. Note that this
number highly affects the efficiency of training, which we usually use less than 200. (We use 120 for
training 56 elements in OC2M dataset)

The neuron specifies the size of the embedding net. From left to right the members denote the sizes of
each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size
of the inner layer, then the inner layer is copied and concatenated, then a ResNet architecture is built
between them.

The axis neuron specifies the size of the submatrix of the embedding matrix, the axis matrix as ex-
plained in the DeepPot-SE paper

If the option resnet dt is set to true, then a timestep is used in the ResNet.

seed gives the random seed that is used to generate random numbers when initializing the model pa-
rameters.

attn sets the length of a hidden vector during scale-dot attention computation.
attn_layer sets the number of layers in attention mechanism.

attn_mask determines whether to mask the diagonal in the attention weights and False is recom-
mended.

attn_dotr determines whether to dot the relative coordinates on the attention weights as a gated
scheme, True is recommended.

4.5.

Descriptor "se_atten" 31

https://arxiv.org/abs/2208.08236
https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1805.09003

DeePMD-kit

Fitting "ener"

DPA-1 only supports "ener" fitting type, and you can refer here for detailed information.

Type embedding

DPA-1 only supports models with type embeddings. And the default setting is as follows:

"type_embedding":{

"neuron": [8l,
"resnet_dt": false,
"seed": 1

You can add these settings in input.json if you want to change the default ones, see here for detailed infor-
madtion.

Type map

For training large systems, especially those with dozens of elements, the type determines the element index
of training data:

"type_map": [
" Mg " 2
I|A1 n ,
n CuH

]

which should include all the elements in the dataset you want to train on.

4.5.4 Data format

DPA-1 supports the standard data format, which is detailed in data-conv.md and system.md. Note that in
this format, only those frames with the same fingerprint (i.e. the number of atoms of different elements) can
be put together as a unified system. This may lead to sparse frame numbers in those rare systems.

An ideal way is to put systems with the same total number of atoms together, which is the way we trained
DPA-1 on OC2M. This system format, which is called mixed_type, is proper to put frame-sparse systems
together and is slightly different from the standard one. Take an example, a mixed_type may contain the
following files:

type.raw

type_map.raw
set.*/box.npy
set.*/coord.npy
set.*/energy.npy
set.*/force.npy
set.*/real_atom_types.npy

This system contains Nframes frames with the same atom number Natoms, the total number of element types
contained in all frames is Ntypes. Most files are the same as those in standard formats, here we only list the
distinct ones:

32 Chapter 4. Model

https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md

DeePMD-kit

ID Property File Re- Shape Description
quired/O
/ Atom type typeraw Re- Natoms All zeros to fake the type input
indexes quired
(place holder)
type Atom type type map Re- Ntypes Atom names that map to atom type contained in
names quired all the frames, which is unnecessart to be con-
tained in the periodic table
type Atom type real atom Re- Nframes Integers that describe atom types in each frame,
indexes of quired * corresponding to indexes in type map. -1 means

each frame Natoms virtual atoms.

With these edited files, one can put together frames with the same Natoms, instead of the same formula (like
H20). Note that this mixed_type format only supports se_atten descriptor.

To put frames with different Natoms into the same system, one can pad systems by adding virtual atoms
whose type is -1. Virtual atoms do not contribute to any fitting property, so the atomic property of virtual
atoms (e.g. forces) should be given zero.

The API to generate or transfer to mixed_type format is available on dpdata for a more convenient experi-
ence.

4.5.5 Training example

Here we upload the AIMgCu example shown in the paper, you can download it here: Baidu disk; Google disk.

4.6 Descriptor "hybrid"

This descriptor hybridizes multiple descriptors to form a new descriptor. For example, we have a list of
descriptors denoted by D1, D, ..., Dy, the hybrid descriptor this the concatenation of the list, i.e. D =
(DlaDQa e aDN)

To use the descriptor in DeePMD-kit, one firstly set the type to hybrid, then provide the definitions of the
descriptors by the items in the 1ist,

"descriptor" :{
lltype n B ’lhybridll ,

"list" : [
{
"type" : "se_e2_a",
},
{
"type" : "se_e2_r",
}
]

},

A complete training input script of this example can be found in the directory

4.6. Descriptor "hybrid" 33

https://github.com/deepmodeling/dpdata
https://pan.baidu.com/s/1Mk9CihPHCmf8quwaMhT-nA?pwd=d586
https://drive.google.com/file/d/11baEpRrvHoqxORFPSdJiGWusb3Y4AnRE/view?usp=sharing

DeePMD-kit

£$deepmd_source_dir/examples/water/hybrid/input.json }

4.7 Determine sel

All descriptors require to set sel, which means the expected maximum number of type-i neighbors of an
atom. DeePMD-kit will allocate memory according to sel.

sel should not be too large or too small. If sel is too large, the computing will become much slower and
cost more memory. If sel is not enough, the energy will be not conserved, making the accuracy of the model
worse.

To determine a proper sel, one can calculate the neighbor stat of the training data before training;:

[dp neighbor-stat -s data -r 6.0 -t 0 H }

where data is the directory of data, 6.0 is the cutoff radius, and 0 and H is the type map. The program will
give the max_nbor_size. For example, max_nbor_size of the water example is [38, 72], meaning an atom
may have 38 O neighbors and 72 H neighbors in the training data.

The sel should be set to a higher value than that of the training data, considering there may be some extreme
geometries during MD simulations. As a result, we set sel to [46, 92] in the water example.

4.8 Fit energy

In this section, we will take $deepmd_source_dir/examples/water/se_e2_a/input.json as an example of
the input file.

4.8.1 The fitting network

The construction of the fitting net is given by section fitting net

"fitting_net" : {

"neuron": [240, 240, 240],
"resnet_dt": true,
"seed": 1

},

¢ neuron specifies the size of the fitting net. If two neighboring layers are of the same size, then a ResNet
architecture is built between them.

o If the option resnet_dt is set to true, then a timestep is used in the ResNet.

¢ seed gives the random seed that is used to generate random numbers when initializing the model pa-
rameters.

34 Chapter 4. Model

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

DeePMD-kit

4.8.2 Loss
The loss function L for training energy is given by
L= peLe + prf +vav

where L., Ly, and L, denote the loss in energy, forces and virials, respectively. p., ps, and p, give the
prefactors of the energy, force and virial losses. The prefectors may not be a constant, rather it changes
linearly with the learning rate. Taking the force prefactor for example, at training step ¢, it is given by

ps(t) :me +pF(1— Z((é)))

where a(t) denotes the learning rate at step t. p‘} and p3° specifies the py at the start of the training and the
limit of t — oo (set by start_pref f and limit_pref f, respectively), i.e.

[pref_f(t) = start_pref_f * (lr(t) / start_lr) + limit_pref_f * (1 - 1r(t) / start_lr)

The loss section in the input. json is

"loss" : {
"start_pref_e": 0.02,
"limit_pref_e": 1,
"start_pref_f": 1000,
"limit_pref f": 1,
"start_pref_v": 0,
"limit_pref_v": 0

}

The options start_pref e, limit_pref e, start_pref f, limit pref f, start pref v and limit pref v determine
the start and limit prefactors of energy, force and virial, respectively.

If one does not want to train with virial, then he/she may set the virial prefactors start pref v and
limit pref v to 0.

4.9 Fit tensor like Dipole and Polarizability

Unlike energy, which is a scalar, one may want to fit some high dimensional physical quantity, like dipole
(vector) and polarizability (matrix, shorted as polar). Deep Potential has provided different APIs to do
this. In this example, we will show you how to train a model to fit a water system. A complete training input
script of the examples can be found in

$deepmd_source_dir/examples/water_tensor/dipole/dipole_input.json
$deepmd_source_dir/examples/water_tensor/polar/polar_input.json

The training and validation data are also provided our examples. But note that the data provided along with
the examples are of limited amount, and should not be used to train a production model.

Similar to the input. json used in ener mode, training JSON is also divided into model, learning rate, loss
and training. Most keywords remain the same as ener mode, and their meaning can be found here. To fit a
tensor, one needs to modify model/fitting net and loss.

4.9. Fit tensor like Dipole and Polarizability 35

DeePMD-kit

4.9.1 The fitting Network

The fitting net section tells DP which fitting net to use.
The JSON of dipole type should be provided like

"fitting net" : {

},

"type": "dipole",
"sel_type": [0],
"neuron": [100,100,100],
"resnet_dt": true,
"seed": 1,

The JSON of polar type should be provided like

"fitting_net" : {

}’

"type": "polar",
"sel_type": [0],
"neuron": [100,100,100],
"resnet_dt": true,
"seed": 1,

¢ type specifies which type of fitting net should be used. It should be either dipole or polar. Note that
global_polar mode in version 1.x is already deprecated and is merged into polar. To specify whether

a system is global or atomic, please see here.

¢ sel_type isalist specifying which type of atoms have the quantity you want to fit. For example, in the
water system, sel_type is [0] since O represents atom 0. If left unset, all types of atoms will be fitted.

¢ The rest arguments have the same meaning as they do in ener mode.

4.9.2 Loss

DP supports a combinational training of the global system (only a global tensor label, i.e. dipole or polar,
is provided in a frame) and atomic system (labels for each atom included in sel_type are provided). In a
global system, each frame has just one tensor label. For example, when fitting polar, each frame will just
provide a 1 x 9 vector which gives the elements of the polarizability tensor of that frame in order XX, XY,
XZ, YX,YY, YZ, XZ, 7Y, 7ZZ. By contrast, in an atomic system, each atom in sel_type has a tensor label.
For example, when fitting a dipole, each frame will provide a #sel_atom x 3 matrices, where #sel_atom is

the number of atoms whose type are in sel_type.

The loss section tells DP the weight of these two kinds of loss, i.e.

Eloss = pref * global_loss + pref_atomic * atomic_loss

The loss section should be provided like

"Joss"

}’

: {

"type": "tensor",
"pref": 1.0,
"pref_atomic": 1.0

e type should be written as tensor as a distinction from ener mode.

36

Chapter 4. Model

DeePMD-kit

¢ pref and pref atomic respectively specify the weight of global loss and atomic loss. It can not be left
unset. If set to 0, the corresponding label will NOT be included in the training process.

4.9.3 Training Data Preparation

In tensor mode, the identification of the label’s type (global or atomic) is derived from the file name. The
global label should be named dipole.npy/raw or polarizability.npy/raw, while the atomic label should
be named atomic_dipole.npy/rawor atomic_polarizability.npy/raw. If wrongly named, DP will report

al error

ValueError: cannot reshape array of size xxx into shape (xx,xx). This error may occur when your
—label mismatch it's name, i.e. you might store global tensor in “atomic_tensor.npy ~ or atomic

—tensor in “tensor.npy’.

In this case, please check the file name of the label.

4.9.4 Train the Model

The training command is the same as ener mode, i.e.

[dp train input.json

The detailed loss can be found in 1curve.out:

-

step rmse_val rmse_trn rmse_lc_wval rmse_lc_trn

0 8.34e+00 8.26e+00 8.34e+00 8.26e+00
100 3.51e-02 8.55e-02 0.00e+00 8.56e-02
200 4.77e-02 5.61e-02 0.00e+00 5.61e-02
300 5.68e-02 1.47e-02 0.00e+00 0.00e+00
400 3.73e-02 3.48e-02 1.99e-02 0.00e+00
500 2.77e-02 5.82e-02 1.08e-02 5.82e-02
600 2.81e-02 5.43e-02 2.01e-02 0.00e+00
700 2.97e-02 3.28e-02 2.03e-02 0.00e+00
800 2.25e-02 6.19e-02 9.05e-03 0.00e+00
900 3.18e-02 5.54e-02 9.93e-03 5.54e-02
1000 2.63e-02 5.02e-02 1.02e-02 5.02e-02
1100 3.27e-02 5.89e-02 2.13e-02 5.89e-02
1200 2.85e-02 2.42e-02 2.85e-02 0.00e+00
1300 3.47e-02 5.71e-02 1.07e-02 5.71e-02
1400 3.13e-02 5.76e-02 3.13e-02 5.76e-02
1500 3.34e-02 1.11e-02 2.09e-02 0.00e+00
1600 3.11e-02 5.64e-02 3.11e-02 5.64e-02
1700 2.97e-02 5.05e-02 2.97e-02 5.05e-02
1800 2.64e-02 7.70e-02 1.09e-02 0.00e+00
1900 3.28e-02 2.56e-02 3.28e-02 0.00e+00
2000 2.59e-02 5.71e-02 1.03e-02 5.71e-02

rmse_gl_val rmse_gl_trn

P O, OO F O WO NNEFELFENDNDNO PO

.00e+00
.38e-03
.96e-03
.10e-03
.18e-03
.11e-03
.01e-03
.17e-03
.68e-03
.74e-03
.01e-03
.43e-03
.00e+00
.00e-03
.00e+00
.57e-03
.00e+00
.00e+00
.94e-03
.00e+00
.94e-03

0.
.00e+00
.00e+00
.84e-03
.35e-03
.00e+00
.79e-03
.10e-03
.74e-03
.00e+00
.00e+00
.00e+00
.02e-03
.00e+00
.00e+00
.39e-03
.00e+00
.00e+00
.62e-03
.20e-03
.00e+00

O W WOOKFH OO WOOONK®OOHKHOWKLEHr OO

00e+00

NP N, OO, NOOORE NN WOo RN O

P

.0e-02
.0e-03
.5e-03
.3e-03
.3e-04
.2e-04
.6e-04
.9e-05
.0e-05
.0e-05
.0e-05
.0e-06
.5e-06
.3e-06
.3e-07
.2e-07
.6e-07
.9e-08
.0e-08
.0e-08
.0e-08

J

One may notice that in each step, some of the local loss and global loss will be 0. 0. This is because our training
data and validation data consist of the global system and atomic system, i.e.

--training_data
>atomic_system
>global_system

--validation_data

(continues on next page)

4.9. Fit tensor like Dipole and Polarizability

37

DeePMD-kit

(continued from previous page)

>atomic_system
>global_system

During training, at each step when the lcurve.out is printed, the system used for evaluating the training
(validation) error may be either with only global or only atomic labels, thus the corresponding atomic or
global errors are missing and are printed as zeros.

4.10 Type embedding approach

We generate specific a type embedding vector for each atom type so that we can share one descriptor em-
bedding net and one fitting net in total, which decline training complexity largely.

The training input script is similar to that of se_e2_a, but different by adding the type embedding section.

4.10.1 Type embedding net

The model defines how the model is constructed, adding a section of type embedding net:

"model": {
"type_map" . [IIUII s IIHII] ,
"type_embedding":{

}’

"descriptor" :{

},
"fitting_net" : {

}

The model will automatically apply the type embedding approach and generate type embedding vectors. If
the type embedding vector is detected, the descriptor and fitting net would take it as a part of the input.

The construction of type embedding net is given by type embedding. An example of type embedding is
provided as follows

"type_embedding" :{

"neuron": [2, 4, 8],
"resnet_dt": false,
"seed": 1

¢ The neuron specifies the size of the type embedding net. From left to right the members denote the
sizes of each hidden layer from the input end to the output end, respectively. It takes a one-hot vector
as input and output dimension equals to the last dimension of the neuron list. If the outer layer is twice
the size of the inner layer, then the inner layer is copied and concatenated, then a ResNet architecture
is built between them.

o If the option resnet_dt is set to true, then a timestep is used in the ResNet.

e seed gives the random seed that is used to generate random numbers when initializing the model pa-
rameters.

38 Chapter 4. Model

https://arxiv.org/abs/1512.03385

DeePMD-kit

A complete training input script of this example can be found in the directory.

[$deepmd_source_dir/examples/water/se_e2_a_tebd/input.json }

See here for further explanation of type embedding.

Note: You can’t apply the compression method while using the atom type embedding.

4.11 Descriptor "se_a_mask"

Descriptor se_a_mask is a concise implementation of the descriptor se_e2_a, but functions slightly differ-
ently. se_a_mask is specially designed for DP/MM simulations where the number of atoms in DP regions is
dynamically changed in simulations.

Therefore, the descriptor se_a_mask is not supported for training with PBC systems for simplicity. Besides,
to make the output shape of the descriptor matrix consistent, the input coordinates are padded with virtual
particle coordinates to the maximum number of atoms (specified with sel in the descriptor setting) in the
system. The real/virtual sign of the atoms is specified with the aparam.npy ([nframes * natoms]) file in the
input systems set directory. The aparam.npy can also be seen as the mask of the atoms in the system, which
is also the origin of the name se_a_mask.

In this example, we will train a DP Mask model for zinc protein interactions. The input systems are the
collection of zinc and its coordinates residues. A sample input system that contains 2 frames is included in
the directory.

[$deepmd_source_dir/examples/zinc_protein/data_dp_mask }

A complete training input script of this example can be found in the directory.

[$deepmd_source_dir/examples/zinc_protein/zinc_se_a_mask.json }

The construction of the descriptor is given by section descriptor. An example of the descriptor is provided as
follows

"descriptor" :{
"type": "se_a_mask",
"sel": [36, 16, 24, 64, 6, 1],
"neuron": [25, 50, 100],
"axis_neuron": 16,
"type_one_side": false,
"resnet_dt": false,
"seed": 1
}

¢ The type of the descriptor is set to "se_a_mask".

e sel gives the maximum number of atoms in input coordinates. It is a list, the length of which is the
same as the number of atom types in the system, and sel[i] denotes the maximum number of atoms
with type 1.

¢ The neuron specifies the size of the embedding net. From left to right the members denote the sizes of
each hidden layer from the input end to the output end, respectively. If the outer layer is twice the size
of the inner layer, then the inner layer is copied and concatenated, then a ResNet architecture is built
between them.

4.11. Descriptor "se_a_mask" 39

https://arxiv.org/abs/1512.03385

DeePMD-kit

e The axis neuron specifies the size of the submatrix of the embedding matrix, the axis matrix as ex-
plained in the DeepPot-SE paper

o If the option type one side is set to true, the embedding network parameters vary by types of neigh-
bor atoms only, so there will be Niypes sets of embedding network parameters. Otherwise, the embed-
ding network parameters vary by types of centric atoms and types of neighbor atoms, so there will be
N2 s sets of embedding network parameters.

o If the option resnet dt is set to true, then a timestep is used in the ResNet.

¢ seed gives the random seed that is used to generate random numbers when initializing the model pa-
rameters.

To make the aparam.npy used for descriptor se_a_mask, two variables in fitting_net section are needed.

"fitting_net" :{
"neuron": [240, 240, 240],
"resnet_dt": true,
"seed": 1,
"numb_aparam": 1,
"use_aparam_as_mask": true

¢ neuron, resnet_dt and seed are the same as the fitting net section for fitting energy.

e numb aparam gives the dimesion of the aparam.npy file. In this example, it is set to 1 and stores the

real/virtual sign of the atoms. For real/virtual atoms, the corresponding sign in aparam.npy is set to
1/0.

e use aparam_as mask is set to true to use the aparam.npy as the mask of the atoms in the descriptor
se_a_mask.

Finally, to make a reasonable fitting task with se_a_mask descriptor for DP/MM simulations, the loss function
with se_a_mask is designed to include the atomic forces difference in specific atoms of the input particles only.
More details about the selection of the specific atoms can be found in paper [DP/MM](left to be filled). Thus,
atom_pref .npy ([nframes * natoms]) is required as the indicator of the specific atoms in the input particles.
And the loss section in the training input script should be set as follows.

"loss": {
"type": "ener",
"start_pref_e":
"limit_pref_e":
"start_pref_f":
"limit_pref_£f": 0.0,
"start_pref_pf": 1.0,
"limit_pref_pf": 1.0,
"_comment": " that's all"

>

>

>

o O © O
O O © O

40 Chapter 4. Model

https://arxiv.org/abs/1805.09003

DeePMD-kit

4.12 Deep potential long-range (DPLR)

Notice: The interfaces of DPLR are not stable and subject to change

The method of DPLR is described in this paper. One is recommended to read the paper before using the
DPLR.

In the following, we take the DPLR model for example to introduce the training and LAMMPS simulation
with the DPLR model. The DPLR model is trained in two steps.

4.12.1 Train a deep Wannier model for Wannier centroids

We use the deep Wannier model (DW) to represent the relative position of the Wannier centroid (WC) with
the atom with which it is associated. One may consult the introduction of the dipole model for a detailed
introduction. An example input wc. json and a small dataset data for tutorial purposes can be found in

[$deepmd_source_dir/examples/water/dplr/train/ }

It is noted that the tutorial dataset is not enough for training a productive model. Two settings make the
training input script different from an energy training input:

"fitting_net": {

"type": "dipole",
"dipole_type": (o],

"neuron": [128, 128, 128],
"seed": 1

},

The type of fitting is set to dipole. The dipole is associated with type 0 atoms (oxygens), by the setting
"dipole_type": [0]. What we trained is the displacement of the WC from the corresponding oxygen atom.
It shares the same training input as the atomic dipole because both are 3-dimensional vectors defined on
atoms. The loss section is provided as follows

"loss": {
"type": "tensor",
"pref": 0.0,
"pref_atomic": 1.0

}7

so that the atomic dipole is trained as labels. Note that the NumPy compressed file atomic_dipole.npy
should be provided in each dataset.

The training and freezing can be started from the example directory by

[dp train dw.json &% dp freeze -o dw.pb }

4.12. Deep potential long-range (DPLR) 41

https://arxiv.org/abs/2112.13327

DeePMD-kit

4.12.2 Train the DPLR model

The training of the DPLR model is very similar to the standard short-range DP models. An example input
script can be found in the example directory. The following section is introduced to compute the long-range
energy contribution of the DPLR model, and modify the short-range DP model by this part.

"modifier": {
"type": "dipole_charge",
"model_name": "dw.pb",
"model_charge_map": [-8],
"sys_charge_map": 6, 11,
"ewald_h": 1.00,
"ewald_beta": 0.40

Fo

The model name specifies which DW model is used to predict the position of WCs. model charge map gives
the amount of charge assigned to WCs. sys_charge map provides the nuclear charge of oxygen (type 0) and
hydrogen (type 1) atoms. ewald beta (unit Ail) gives the spread parameter controls the spread of Gaussian
charges, and ewald h (unit A) assigns the grid size of Fourier transformation. The DPLR model can be trained
and frozen by (from the example directory)

[dp train ener.json && dp freeze -o ener.pb }

4.12.3 Molecular dynamics simulation with DPLR

In MD simulations, the long-range part of the DPLR is calculated by the LAMMPS kspace support. Then
the long-range interaction is back-propagated to atoms by DeePMD-kit. This setup is commonly used in
classical molecular dynamics simulations as the “virtual site”. Unfortunately, LAMMPS does not natively
support virtual sites, so we have to hack the LAMMPS code, which makes the input configuration and script
a little wired.

An example of an input configuration file and script can be found in

[$deepmd_source_dir/examples/water/dplr/lmp/]

We use atom_style full for DPLR simulations. the coordinates of the WCs are explicitly written in the
configuration file. Moreover, a virtual bond is established between the oxygens and the WCs to indicate they
are associated together. The configuration file containing 128 H20 molecules is thus written as

512 atoms
3 atom types
128 bonds
1 bond types

0 16.421037674 xlo xhi
0 16.421037674 ylo yhi
0 16.421037674 zlo zhi
00 0 xy xz yz

Masses

(continues on next page)

42 Chapter 4. Model

DeePMD-kit

Atoms

385

386

Bonds

111 385
21 2 386

11 6 8.4960699081e+00 7.5073699951e+00 9.6371297836e+00
21 6 4.0597701073e+00 6.8156299591e+00 1.2051420212e+01
1 3 -8 8.4960699081e+00 7.5073699951e+00 9.6371297836e+00
2 3 -8 4.0597701073e+00 6.8156299591e+00 1.2051420212e+01

(continued from previous page)

J

The oxygens and hydrogens are assigned with atom types 1 and 2 (corresponding to training atom types 0
and 1), respectively. The WCs are assigned with atom type 3. We want to simulate heavy water so the mass
of hydrogens is set to 2.

An example input script is provided in

£$deepmd_source_dir/examples/water/dplr/lmp/in.lammps

Here are some explanations

-

group
group

pair_style
pair_coeff
bond_style
bond_coeff
\special_bonds

groups of real and virtual atoms

real_atom type 1 2
virtual_atom type 3

bond between real and its corresponding virtual site should be given
to setup a map between real and virtual atoms. However, no real
bonded interaction is applied, thus bond_sytle "zero" is used.

deepmd ener.pb
* %

zero
*

1j/coul 1 1 1 angle no

J

Type 1 and 2 (O and H) are real_atoms, while type 3 (WCs) are virtual_atoms. The model file ener.pb
stores both the DW and DPLR models, so the position of WCs and the energy can be inferred from it. A
virtual bond type is specified by bond_style zero. The special_bonds command switches off the exclusion
of intramolecular interactions.

kspace_style "pppm/dplr" should be used. in addition the
gewald(1/distance) should be set the same as that used in
training. Currently only ik differentiation is supported.

kspace_style
kspace_modify

pppn/dplr le-5

gewald ${BETA} diff ik mesh ${KMESH} ${KMESH} ${KMESH}

The long-range part is calculated by the kspace support of LAMMPS. The kspace_style pppm/dplr is re-
quired. The spread parameter set by variable BETA should be set the same as that used in training. The KMESH
should be set dense enough so the long-range calculation is converged.

4.12. Deep potential long-range (DPLR)

43

DeePMD-kit

(B
"fixz dplr" set the position of the wirtual atom, and spread the

electrostatic interaction asserting on the virtual atom to the real

atoms. "type_associate"” assoctates the real atom type its

corresponding virtual atom type. "bond_type" gives the type of the

bond between the real and virtual atoms.

fix 0 all dplr model ener.pb type_associate 1 3 bond_type 1

\fix_modify 0 virial yes |

The fix command dplr calculates the position of WCs by the DW model and back-propagates the long-range
interaction on virtual atoms to real toms. At this time, the training parameter type map will be mapped to
LAMMPS atom types.

compute the temperature of real atoms, exzcluding virtual atom contribution

compute real_temp real_atom temp

compute real press all pressure real_temp

fix 1 real_atom nvt temp ${TEMP} ${TEMP} ${TAU_T}
fix_modify 1 temp real_temp

The temperature of the system should be computed from the real atoms. The kinetic contribution in the
pressure tensor is also computed from the real atoms. The thermostat is applied to only real atoms. The
computed temperature and pressure of real atoms can be accessed by, e.g.

fix thermo_print all print ${THERMO_FREQ} "$(step) $(pe) $(ke) $(etotal) $(enthalpy)
—$(c_real_temp) $(c_real_press) $(vol) $(c_real press[1]) $(c_real_press[2]) $(c_real_press([3])",
—append thermo.out screen no title "# step pe ke etotal enthalpy temp press vol pxx pyy pzz"

The LAMMPS simulation can be started from the example directory by

[lmp -i in.lammps]

If LAMMPS complains that no model file ener . pb exists, it can be copied from the training example directory.

The MD simulation lasts for only 20 steps. If one runs a longer simulation, it will blow up, because the model
is trained with a very limited dataset for very short training steps, thus is of poor quality.

Another restriction that should be noted is that the energies printed at the zero steps are not correct. This
is because at the zero steps the position of the WC has not been updated with the DW model. The energies
printed in later steps are correct.

4.13 Deep Potential - Range Correction (DPRc)

Deep Potential - Range Correction (DPRc) is designed to combine with QM/MM method, and corrects energies
from a low-level QM/MM method to a high-level QM/MM method:

E = Equ(R;P) + Equpiv(R; P) + Eavii(R) + Eppre(R)

See the JCTC paper for details.

44 Chapter 4. Model

https://doi.org/10.1021/acs.jctc.1c00201

DeePMD-kit

4.13.1 Training data

Instead the normal ab initio data, one needs to provide the correction from a low-level QM/MM method to a
high-level QM/MM method:

E= Ehighflevel QM/MM — Elowflevel QM/MM

Two levels of data use the same MM method, so Fyny is eliminated.

4.13.2 Training the DPRc model

In a DPRc model, QM atoms and MM atoms have different atom types. Assuming we have 4 QM atom types
(C, H, O, P) and 2 MM atom types (HW, OW):

["type_map": [ncu’ ”H”, unn, "D”, nown, "P"]]

As described in the paper, the DPRc model only corrects Eqy and Eqywy within the cutoff, so we use a
hybrid descriptor to describe them separatedly:

"descriptor" :{
"type": "hybrid",
"list" : [
{
"type": "se_e2_a",
"sel": (6, 11, 0, 6, 0, 11,
"rcut_smth": 1.00,
"rcut": 9.00,
"neuron": [12, 25, 50],
"exclude_types": [[2, 21, [2, 4], [4, 4], [0, 21, [0, 4], [1, 2], [1, 41, [3, 2]1,.
—[3, 4], [5, 21, [5, 4]],
"axis_neuron": 12,
"set_davg_zero": true,
" _comment": " QM/QM interaction"
Fo
{
"type": "se_e2_a",
"sel": [6, 11, 100, 6, 50, 1],
"rcut_smth": 0.50,
"rcut": 6.00,
"neuron": [12, 25, 50],
"exclude_types": tto, o1, fro, 11, fo, 31, [0, 51, [1, 11, [1, 31, [1, 5], [3, 3],.
—[3, 51, [5, 5], [2, 21, [2, 41, [4, 411,
"axis_neuron": 12,
"set_davg_zero": true,
" comment": " QM/MM interaction"
}
]
}

exclude types can be generated by the following Python script:

from itertools import combinations_with_replacement, product

gm = (0, 1, 3, 5)

mm = (2, 4)

print("QM/QM:", list(map(list, list(combinations_with_replacement(mm, 2)) + list(product(qm,,
—mm)))))

(continues on next page)

4.13. Deep Potential - Range Correction (DPRc) 45

DeePMD-kit

.

print ("QM/MM:", list(map(list, list(combinations_with_replacement(qm,

—replacement (mm, 2)))))

(continued from previous page)

2)) + list(combinations_with_

Also, DPRc assumes MM atom energies (atom_ener) are zero:

-

L

"fitting_net": {

"neuron": [240, 240, 240],

"resnet_dt": true,

"atom_ener": [null, null, 0.0, null, 0.0, null]
}

Note that atom_ener only works when descriptor/set_davg zero is true.

4.13.3 Run MD simulations

The DPRc model has the best practices with the AMBER QM/MM module. An example is given by GitLab
RutgersLBSR/AmberDPRc. In theory, DPRc is able to be used with any QM/MM package, as long as the
DeePMD-kit package accepts QM atoms and MM atoms within the cutoff range and returns energies and

forces.

46

Chapter 4. Model

https://gitlab.com/RutgersLBSR/AmberDPRc/
https://gitlab.com/RutgersLBSR/AmberDPRc/

CHAPTER
FIVE

TRAINING

5.1 Train a model

Several examples of training can be found in the examples directory:

[$ cd $deepmd_source_dir/examples/water/se_e2_a/

After switching to that directory, the training can be invoked by

[$ dp train input.json

where input . json is the name of the input script.

By default, the verbosity level of the DeePMD-kit is INFO, one may see a lot of important information on
the code and environment showing on the screen. Among them two pieces of information regarding data
systems are worth special notice.

DEEPMD INFO --—Summary of DataSystem: training -

—

DEEPMD INFO found 3 system(s):

DEEPMD INFO system natoms bch_sz n_bch prob pbc
DEEPMD INFO ../data_water/data_0/ 192 1 80 0.250 T
DEEPMD INFO ../data_water/data_1/ 192 1 160 0.500 T
DEEPMD INFO ../data_water/data_2/ 192 1 80 0.250 T

DEEPMD INFO - -

—

DEEPMD INFO -—-—Summary of DataSystem: validation -

=
DEEPMD INFO found 1 system(s):

DEEPMD INFO system natoms bch_sz n_bch prob pbc
DEEPMD INFO ../data_water/data_3 192 1 80 1.000 T
DEEPMD INFO = -—--——--——-——————————o oo e e e

—

The DeePMD-kit prints detailed information on the training and validation data sets. The data sets are
defined by training data and validation data defined in the training section of the input script. The training
data set is composed of three data systems, while the validation data set is composed by one data system. The
number of atoms, batch size, the number of batches in the system and the probability of using the system
are all shown on the screen. The last column presents if the periodic boundary condition is assumed for the
system.

During the training, the error of the model is tested every disp freq training steps with the batch used to
train the model and with numb btch batches from the validating data. The training error and validation
error are printed correspondingly in the file disp_file (default is 1curve.out). The batch size can be set in the

47

DeePMD-kit

input script by the key batch_size in the corresponding sections for the training and validation data set. An
example of the output

step rmse_val rmse_trn rmse_e_val rTmse_e_trn rmse_f_val rTmse_f_trn P
0 3.33e+01 3.41e+01 1.03e+01 1.03e+01 8.39e-01 8.72e-01 1.0e-03

100 2.57e+01 2.56e+01 1.87e+00 1.88e+00 8.03e-01 8.02e-01 1.0e-03

200 2.45e+01 2.56e+01 2.26e-01 2.21e-01 7.73e-01 8.10e-01 1.0e-03

300 1.62e+01 1.66e+01 5.01e-02 4.46e-02 5.11e-01 5.26e-01 1.0e-03

400 1.36e+01 1.32e+01 1.07e-02 2.07e-03 4.29e-01 4.19e-01 1.0e-03

500 1.07e+01 1.05e+01 2.45e-03 4.11e-03 3.38e-01 3.31e-01 1.0e-03

The file contains 8 columns, from left to right, which are the training step, the validation loss, training loss,
root mean square (RMS) validation error of energy, RMS training error of energy, RMS validation error of
force, RMS training error of force and the learning rate. The RMS error (RMSE) of the energy is normalized
by the number of atoms in the system. One can visualize this file with a simple Python script:

import numpy as np
import matplotlib.pyplot as plt

data = np.genfromtxt("lcurve.out", names=True)

for name in data.dtype.names[1:-1]:
plt.plot(datal'step'], data[name], label=name)

plt.legend()

plt.xlabel('Step')

plt.ylabel('Loss')

plt.xscale('symlog')

plt.yscale('log')

plt.grid()

plt.show()

Checkpoints will be written to files with the prefix save ckpt every save freq training steps.

Warning: It is warned that the example water data (in folder examples/water/data) is of very limited
amount, is provided only for testing purposes, and should not be used to train a production model.

5.2 Advanced options

In this section, we will take $deepmd_source_dir/examples/water/se_e2_a/input.json as an example of
the input file.

5.2.1 Learning rate

The learning rate section in input. json is given as follows

"learning_rate" :{

"type": "exp",
"start_lr": 0.001,
"stop_lr": 3.51e-8,
"decay_steps": 5000,

" _comment": "that's all"

48 Chapter 5. Training

DeePMD-kit

o start Ir gives the learning rate at the beginning of the training.

e stop Ir gives the learning rate at the end of the training. It should be small enough to ensure that the
network parameters satisfactorily converge.

¢ During the training, the learning rate decays exponentially from start_Ir to stop_Ir following the for-
mula:

alt) = agAt/™

where t is the training step, « is the learning rate, oy is the starting learning rate (set by start Ir), A is the
decay rate, and 7 is the decay steps, i.e.

1r(t) = start_lr * decay_rate ~ (t / decay_steps)

5.2.2 Training parameters

Other training parameters are given in the training section.

"training": {
"training_data": {
"systems": ["../data_water/data_0/", "../data_water/data_1/", "../data_
—water/data_2/"],
"batch_size": "auto"
Yo
"validation_data":{
"systems": ["../data_water/data_3"],
"batch_size": 1,
"numb_btch": &
Ig
"mixed_precision": {
"output_prec": "float32",
"compute_prec": "float16"

}’

"numb_steps": 1000000,
"seed": 1,
"disp_file": "lcurve.out",
"disp_freq": 100,
"save_freq": 1000

The sections training_data and validation data give the training dataset and validation dataset, respectively.
Taking the training dataset for example, the keys are explained below:

* systems provide paths of the training data systems. DeePMD-kit allows you to provide multiple systems
with different numbers of atoms. This key can be a 1ist or a str.

— list: systems gives the training data systems.

— str: systems should be a valid path. DeePMD-kit will recursively search all data systems in this
path.

¢ At each training step, DeePMD-kit randomly picks batch_size frame(s) from one of the systems. The
probability of using a system is by default in proportion to the number of batches in the system. More
options are available for automatically determining the probability of using systems. One can set the
key auto prob to

5.2. Advanced options 49

DeePMD-kit

— "prob_uniform" all systems are used with the same probability.
— "prob_sys_size" the probability of using a system is proportional to its size (number of frames).

— "prob_sys_size; sidx_0:eidx_0:w_0; sidx_1l:eidx_1:w_1;..." the list of systems is di-
vided into blocks. Block i has systems ranging from sidx_i to eidx_i. The probability of using
a system from block i is proportional to w_i. Within one block, the probability of using a system
is proportional to its size.

e An example of using "auto_prob" is given below. The probability of using systems[2] is 0.4, and
the sum of the probabilities of using systems[0] and systems[1] is 0.6. If the number of frames in
systems [1] is twice of system [0], then the probability of using system[1] is 0.4 and that of system[0]

is 0.2.
"training_data": {
"systems": ["../data_water/data_0/", "../data_water/data_1/", "../data_
—water/data_2/"],
"auto_prob": "prob_sys_size; 0:2:0.6; 2:3:0.4",
"batch_size": "auto"

}

e The probability of using systems can also be specified explicitly with key sys probs which is a list having
the length of the number of systems. For example

"training_data": {

"systems": ["../data_water/data_0/", "../data_water/data_1/", "../data_
—water/data_2/"],

"sys_probs": [0.5, 0.3, 0.2],

"batch_size": "auto:32"

¢ The key batch _size specifies the number of frames used to train or validate the model in a training step.
It can be set to

— list: the length of which is the same as the systems. The batch size of each system is given by
the elements of the list.

— int: all systems use the same batch size.
— "auto": the same as "auto:32", see "auto:N"

— "auto:N": automatically determines the batch size so that the batch_size times the number of
atoms in the system is no less than N.

¢ The key numb_batch in validate data gives the number of batches of model validation. Note that the
batches may not be from the same system

The section mixed_ precision specifies the mixed precision settings, which will enable the mixed precision
training workflow for DeePMD-kit. The keys are explained below:

e output prec precision used in the output tensors, only float32 is supported currently.

e compute prec precision used in the computing tensors, only f1loat16 is supported currently. Note there
are several limitations about mixed precision training:

¢ Only se _e2 a type descriptor is supported by the mixed precision training workflow.
¢ The precision of the embedding net and the fitting net are forced to be set to float32.
Other keys in the training section are explained below:

e numb_steps The number of training steps.

50 Chapter 5. Training

DeePMD-kit

¢ seed The random seed for getting frames from the training data set.
e disp file The file for printing learning curve.
e disp freq The frequency of printing learning curve. Set in the unit of training steps

¢ save freq The frequency of saving checkpoint.

5.2.3 Options and environment variables

Several command line options can be passed to dp train, which can be checked with

£$ dp train --help

An explanation will be provided

positional arguments:
INPUT the input json database

optional arguments:
-h, --help show this help message and exit

—--init-model INIT_MODEL
Initialize a model by the provided checkpoint

--restart RESTART Restart the training from the provided checkpoint

--init-frz-model INIT_FRZ_MODEL
Initialize the training from the frozen model.
--skip-neighbor-stat Skip calculating neighbor statistics. Sel checking, automatic sel, and
—model compression will be disabled. (default: False)

--init-model model.ckpt, initializes the model training with an existing model that is stored in the check-
point model. ckpt, the network architectures should match.

--restart model.ckpt, continues the training from the checkpoint model. ckpt.

--init-frz-model frozen_model.pb, initializes the training with an existing model that is stored in
frozen_model.pb.

--skip-neighbor-stat will skip calculating neighbor statistics if one is concerned about performance. Some
features will be disabled.

To maximize the performance, one should follow FAQ: How to control the parallelism of a job to control the
number of threads.

One can set other environmental variables:

Environment vari- Al- De- Usage

ables lowed fault
value value

DP INTERFACE I high, high Control high (double) or low (float) precision of training.
low

o

DP_AUTO PARAL 0,1 Enable auto parallelization for CPU operators.
DP_JIT 0,1 0 Enable JIT. Note that this option may either improve or decrease
the performance. Requires TensorFlow supports JIT.

5.2. Advanced options 51

DeePMD-kit

5.2.4 Adjust sel of a frozen model

One can use --init-frz-model features to adjust (increase or decrease) sel of a existing model. Firstly, one
needs to adjust sel in input. json. For example, adjust from [46, 92] to [23, 46].

"model": {
"descriptor": {
"sel": [23, 46]
}

To obtain the new model at once, numb_steps should be set to zero:

"training": {
"numb_steps": 0O

}

Then, one can initialize the training from the frozen model and freeze the new model at once:

dp train input.json --init-frz-model frozen_model.pb
dp freeze -o frozen_model_adjusted_sel.pb

Two models should give the same result when the input satisfies both constraints.

Note: At this time, this feature is only supported by se_e2_a descriptor with set_davg_true enabled, or
hybrid composed of the above descriptors.

5.3 Training Parameters

Note: One can load, modify, and export the input file by using our effective web-based tool DP-GUI. All
training parameters below can be set in DP-GUI. By clicking “SAVE JSON”, one can download the input file
for furthur training.

model:

type: dict
argument path: model

type_map:
type: list, optional
argument path: model/type_map
A list of strings. Give the name to each type of atoms. It is noted that the num-
ber of atom type of training system must be less than 128 in a GPU environ-
ment. If not given, type.raw in each system should use the same type indexes,
and type_map.raw will take no effect.

data_stat_nbatch:
type: int, optional, default: 10
argument path: model/data_stat_nbatch

The model determines the normalization from the statistics of the data. This key
specifies the number of frames in each system used for statistics.

52 Chapter 5. Training

https://deepmodeling.com/dpgui/input/deepmd-kit-2.0

DeePMD-kit

data_stat_protect:
type: float, optional, default: 0.01
argument path: model/data_stat_protect

Protect parameter for atomic energy regression.

data_bias_nsample:
type: int, optional, default: 10
argument path: model/data_bias_nsample
The number of training samples in a system to compute and change the energy
bias.

use_srtab:
type: str, optional
argument path: model/use_srtab
The table for the short-range pairwise interaction added on top of DP. The table
is a text data file with (N_t + 1) * N_t /2 + 1 columes. The first colume is the
distance between atoms. The second to the last columes are energies for pairs of
certain types. For example we have two atom types, 0 and 1. The columes from
2nd to 4th are for 0-0, 0-1 and 1-1 correspondingly.

smin_alpha:
type: float, optional
argument path: model/smin_alpha
The short-range tabulated interaction will be swithed according to the distance
of the nearest neighbor. This distance is calculated by softmin. This parameter
is the decaying parameter in the softmin. It is only required when use srtab is
provided.

sw_rmin:
type: float, optional
argument path: model/sw_rmin
The lower boundary of the interpolation between short-range tabulated interac-
tion and DP. It is only required when use_srtab is provided.

SW_rmax:
type: float, optional
argument path: model/sw_rmax
The upper boundary of the interpolation between short-range tabulated inter-
action and DP. It is only required when use_srtab is provided.

type_embedding:
type: dict, optional
argument path: model/type_embedding
The type embedding.

neuron:
type: 1ist, optional, default: [8]
argument path: model/type_embedding/neuron
Number of neurons in each hidden layers of the embedding net. When

two layers are of the same size or one layer is twice as large as the previous
layer, a skip connection is built.

5.3. Training Parameters 53

DeePMD-kit

activation_function:
type: str, optional, default: tanh
argument path: model/type_embedding/activation_function

The activation function in the embedding net. Supported activation func-
tions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”,

b

“None”, “none”. Note that “gelu” denotes the custom operator version,
and “gelu_tf” denotes the TF standard version. If you set “None” or
“none” here, no activation function will be used.
resnet_dt:
type: bool, optional, default: False
argument path: model/type_embedding/resnet_dt
Whether to use a “Timestep” in the skip connection
precision:
type: str, optional, default: default
argument path: model/type_embedding/precision
The precision of the embedding net parameters, supported options are

“default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the
interface precision.

trainable:
type: bool, optional, default: True
argument path: model/type_embedding/trainable

If the parameters in the embedding net are trainable

seed:

type: NoneType | int, optional, default: None
argument path: model/type_embedding/seed

Random seed for parameter initialization

descriptor:

type: dict
argument path: model/descriptor

The descriptor of atomic environment.
Depending on the value of type, different sub args are accepted.

type:
type: str (flag key)
argument path: model/descriptor/type
possible choices: Loc_ frame, se_e2_a, se_e3, se_a_tpe, se_e2_r,
hybrid, se_atten, se_a_mask

The type of the descritpor. See explanation below.

¢ loc_frame: Defines a local frame at each atom, and the compute the
descriptor as local coordinates under this frame.

e se_e2 a: Used by the smooth edition of Deep Potential. The full relative
coordinates are used to construct the descriptor.

¢ se_e2 1: Used by the smooth edition of Deep Potential. Only the dis-
tance between atoms is used to construct the descriptor.

54

Chapter 5. Training

DeePMD-kit

¢ se_e3: Used by the smooth edition of Deep Potential. The full relative
coordinates are used to construct the descriptor. Three-body embed-
ding will be used by this descriptor.

e se_a_tpe: Used by the smooth edition of Deep Potential. The full rela-
tive coordinates are used to construct the descriptor. Type embedding
will be used by this descriptor.

e se_atten: Used by the smooth edition of Deep Potential. The full rela-
tive coordinates are used to construct the descriptor. Attention mech-
anism will be used by this descriptor.

e se_a_mask: Used by the smooth edition of Deep Potential. It can accept
a variable number of atoms in a frame (Non-PBC system). aparam are
required as an indicator matrix for the real/virtual sign of input atoms.

¢ hybrid: Concatenate of a list of descriptors as a new descriptor.

When type is set to loc_frame:

sel_a:
type: 1list
argument path: model/descriptor[loc_frame] /sel_a

A list of integers. The length of the list should be the same as the number
of atom types in the system. sel a[i] gives the selected number of type-i
neighbors. The full relative coordinates of the neighbors are used by the
descriptor.

sel_r:
type: 1list
argument path: model/descriptor[loc_frame]/sel_r

A list of integers. The length of the list should be the same as the number
of atom types in the system. sel r[i] gives the selected number of type-i
neighbors. Only relative distance of the neighbors are used by the descrip-
tor. sel a[i] + sel r[i] is recommended to be larger than the maximally
possible number of type-i neighbors in the cut-off radius.

rcut:
type: float, optional, default: 6.0
argument path: model/descriptor [loc_frame] /rcut

The cut-off radius. The default value is 6.0

axis_rule:
type: 1list
argument path: model/descriptor [loc_frame] /axis_rule

A list of integers. The length should be 6 times of the number of types.

e axis rule[i*6+0]: class of the atom defining the first axis of type-i atom.
0 for neighbors with full coordinates and 1 for neighbors only with rel-
ative distance.

e axis_rule[i*6+1]: type of the atom defining the first axis of type-i atom.

e axis rule[i*6+2]: index of the axis atom defining the first axis. Note
that the neighbors with the same class and type are sorted according to
their relative distance.

e axis_rule[i*6+3]: class of the atom defining the second axis of type-i
atom. 0 for neighbors with full coordinates and 1 for neighbors only
with relative distance.

e axis_rule[i*6+4]: type of the atom defining the second axis of type-i
atom.

5.3. Training Parameters 55

DeePMD-kit

e axis rule[i*6+5]: index of the axis atom defining the second axis. Note
that the neighbors with the same class and type are sorted according to
their relative distance.

When type is set to se_e2_a (or its alias se_a):
sel:

type: str | list, optional, default: auto
argument path: model/descriptor[se_e2_al/sel

This parameter set the number of selected neighbors for each type of

atom. It can be:

e List[int]. The length of the list should be the same as the number of
atom types in the system. selli] gives the selected number of type-i
neighbors. sel[i] is recommended to be larger than the maximally pos-
sible number of type-i neighbors in the cut-off radius. It is noted that
the total sel value must be less than 4096 in a GPU environment.

e str. Can be “auto:factor” or “auto”. “factor” is a float number larger
than 1. This option will automatically determine the sel. In detail it
counts the maximal number of neighbors with in the cutoff radius for
each type of neighbor, then multiply the maximum by the “factor”.
Finally the number is wraped up to 4 divisible. The option “auto” is
equivalent to “auto:1.1”.

rcut:
type: float, optional, default: 6.0
argument path: model/descriptor[se_e2_al/rcut

The cut-off radius.

rcut_smth:
type: float, optional, default: 0.5
argument path: model/descriptor[se_e2_al/rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from
rcut to rcut_smth

neuron:
type: 1list, optional, default: [10, 20, 40]
argument path: model/descriptor[se_e2_a]/neuron
Number of neurons in each hidden layers of the embedding net. When
two layers are of the same size or one layer is twice as large as the previous
layer, a skip connection is built.

axis_neuron:
type: int, optional, default: 4, alias: n_axis_neuron
argument path: model/descriptor[se_e2_al/axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:
type: str, optional, default: tanh
argument path: model/descriptor[se_e2_al/activation_function
The activation function in the embedding net. Supported activation func-

tions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”,
“None”, “none”. Note that “gelu” denotes the custom operator version,

56 Chapter 5. Training

DeePMD-kit

and “gelu_tf” denotes the TF standard version. If you set “None” or
“none” here, no activation function will be used.
resnet_dt:
type: bool, optional, default: False
argument path: model/descriptor[se_e2_a]/resnet_dt
Whether to use a “Timestep” in the skip connection
type_one_side:
type: bool, optional, default: False
argument path: model/descriptor[se_e2_al/type_one_side
If true, the embedding network parameters vary by types of neigh-
bor atoms only, so there will be $N_text{types}$ sets of embedding net-
work parameters. Otherwise, the embedding network parameters vary

by types of centric atoms and types of neighbor atoms, so there will be
$N_text{types} 2$ sets of embedding network parameters.

precision:
type: str, optional, default: default

argument path: model/descriptor[se_e2_a]/precision

The precision of the embedding net parameters, supported options are
“default”, “floatl6”, “float32”, “float64”, “bfloat16”. Default follows the
interface precision.

trainable:
type: bool, optional, default: True
argument path: model/descriptor[se_e2_al/trainable
If the parameters in the embedding net is trainable

seed:
type: NoneType | int, optional
argument path: model/descriptor[se_e2_al/seed

Random seed for parameter initialization

exclude_types:
type: 1ist, optional, default: []
argument path: model/descriptor [se_e2_al/exclude_types
The excluded pairs of types which have no interaction with each other.
For example, [[0, 1]] means no interaction between type 0 and type 1.
set_davg_zero:
type: bool, optional, default: False

argument path: model/descriptor[se_e2_al/set_davg_zero

Set the normalization average to zero. This option should be set when
atom_ener in the energy fitting is used

When type is set to se_e3 (or its aliases se_at, se_a_3be, se_t):

sel:

type: str | 1list, optional, default: auto

5.3.

Training Parameters 57

DeePMD-kit

argument path: model/descriptor[se_e3]/sel

This parameter set the number of selected neighbors for each type of

atom. It can be:

o List[int]. The length of the list should be the same as the number of
atom types in the system. sel[i] gives the selected number of type-i
neighbors. sel[i] is recommended to be larger than the maximally pos-
sible number of type-i neighbors in the cut-off radius. It is noted that
the total sel value must be less than 4096 in a GPU environment.

e str. Can be “auto:factor” or “auto”. “factor” is a float number larger
than 1. This option will automatically determine the sel. In detail it
counts the maximal number of neighbors with in the cutoff radius for
each type of neighbor, then multiply the maximum by the “factor”.
Finally the number is wraped up to 4 divisible. The option “auto” is
equivalent to “auto:1.1”.

rcut:

type: float, optional, default: 6.0
argument path: model/descriptor [se_e3]/rcut

The cut-off radius.

rcut_smth:
type: float, optional, default: 0.5
argument path: model/descriptor [se_e3]/rcut_smth
Where to start smoothing. For example the 1/r term is smoothed from
rcut to rcut_smth

neuron:
type: 1list, optional, default: [10, 20, 40]
argument path: model/descriptor[se_e3]/neuron
Number of neurons in each hidden layers of the embedding net. When
two layers are of the same size or one layer is twice as large as the previous
layer, a skip connection is built.

activation_function:
type: str, optional, default: tanh
argument path: model/descriptor[se_e3]/activation_function
The activation function in the embedding net. Supported activation func-
tions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”,
“None”, “none”. Note that “gelu” denotes the custom operator version,
and “gelu_tf” denotes the TF standard version. If you set “None” or
“none” here, no activation function will be used.

resnet_dt:
type: bool, optional, default: False
argument path: model/descriptor[se_e3]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:
type: str, optional, default: default
argument path: model/descriptor[se_e3]/precision

58 Chapter 5.

Training

DeePMD-kit

The precision of the embedding net parameters, supported options are
“default”, “floatl6”, “float32”, “float64”, “bfloat16”. Default follows the
interface precision.

trainable:

type: bool, optional, default: True
argument path: model/descriptor[se_e3]/trainable

If the parameters in the embedding net are trainable

seed:
type: NoneType | int, optional
argument path: model/descriptor [se_e3]/seed

Random seed for parameter initialization

set_davg_zero:
type: bool, optional, default: False
argument path: model/descriptor [se_e3]/set_davg_zero

Set the normalization average to zero. This option should be set when
atom_ener in the energy fitting is used

When type is set to se_a_tpe (or its alias se_a_ebd):
sel:

type: str | list, optional, default: auto
argument path: model/descriptor[se_a_tpel/sel

This parameter set the number of selected neighbors for each type of

atom. It can be:

¢ List[int]. The length of the list should be the same as the number of
atom types in the system. sel[i] gives the selected number of type-i
neighbors. sel[i] is recommended to be larger than the maximally pos-
sible number of type-i neighbors in the cut-off radius. It is noted that
the total sel value must be less than 4096 in a GPU environment.

e str. Can be “auto:factor” or “auto”. “factor” is a float number larger
than 1. This option will automatically determine the sel. In detail it
counts the maximal number of neighbors with in the cutoff radius for
each type of neighbor, then multiply the maximum by the “factor”.
Finally the number is wraped up to 4 divisible. The option “auto” is
equivalent to “auto:1.17.

rcut:
type: float, optional, default: 6.0
argument path: model/descriptor[se_a_tpel /rcut
The cut-off radius.

rcut_smth:
type: float, optional, default: 0.5
argument path: model/descriptor[se_a_tpel] /rcut_smth
Where to start smoothing. For example the 1/r term is smoothed from
rcut to rcut_smth
neuron:
type: 1ist, optional, default: [10, 20, 40]

5.3. Training Parameters 59

DeePMD-kit

argument path: model/descriptor[se_a_tpe] /neuron

Number of neurons in each hidden layers of the embedding net. When
two layers are of the same size or one layer is twice as large as the previous
layer, a skip connection is built.

axis_neuron:
type: int, optional, default: 4, alias: n_axis_neuron
argument path: model/descriptor [se_a_tpe] /axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:
type: str, optional, default: tanh
argument path: model/descriptor[se_a_tpel]/activation_function
The activation function in the embedding net. Supported activation func-
tions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”,
“None”, “none”. Note that “gelu” denotes the custom operator version,
and “gelu_tf” denotes the TF standard version. If you set “None” or
“none” here, no activation function will be used.

resnet_dt:
type: bool, optional, default: False
argument path: model/descriptor[se_a_tpel /resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:
type: bool, optional, default: False
argument path: model/descriptor[se_a_tpel/type_one_side
If true, the embedding network parameters vary by types of neigh-
bor atoms only, so there will be $N_text{types}$ sets of embedding net-
work parameters. Otherwise, the embedding network parameters vary
by types of centric atoms and types of neighbor atoms, so there will be
$N_text{types} 2$ sets of embedding network parameters.

precision:
type: str, optional, default: default
argument path: model/descriptor[se_a_tpel] /precision
The precision of the embedding net parameters, supported options are
“default”, “floatl6”, “float32”, “float64”, “bfloat16”. Default follows the
interface precision.

trainable:
type: bool, optional, default: True
argument path: model/descriptor[se_a_tpel]/trainable

If the parameters in the embedding net is trainable

seed:
type: NoneType | int, optional
argument path: model/descriptor [se_a_tpe]/seed

Random seed for parameter initialization

60 Chapter 5. Training

DeePMD-kit

exclude_types:
type: 1list, optional, default: []
argument path: model/descriptor[se_a_tpel/exclude_types
The excluded pairs of types which have no interaction with each other.
For example, [[0, 1]] means no interaction between type 0 and type 1.
set_davg_zero:
type: bool, optional, default: False
argument path: model/descriptor[se_a_tpel/set_davg_zero
Set the normalization average to zero. This option should be set when
atom_ener in the energy fitting is used
type_nchanl:
type: int, optional, default: 4
argument path: model/descriptor[se_a_tpel] /type_nchanl

number of channels for type embedding

type_nlayer:
type: int, optional, default: 2
argument path: model/descriptor[se_a_tpel /type_nlayer

number of hidden layers of type embedding net

numb_aparam:
type: int, optional, default: 0
argument path: model/descriptor[se_a_tpe] /numb_aparam

dimension of atomic parameter. if set to a value > 0, the atomic parame-
ters are embedded.

When type is set to se_e2_r (or its alias se_r):

sel:

type: str | list, optional, default: auto
argument path: model/descriptor[se_e2_r]/sel

This parameter set the number of selected neighbors for each type of

atom. It can be:

e List[int]. The length of the list should be the same as the number of
atom types in the system. selli] gives the selected number of type-i
neighbors. sel[i] is recommended to be larger than the maximally pos-
sible number of type-i neighbors in the cut-off radius. It is noted that
the total sel value must be less than 4096 in a GPU environment.

e str. Can be “auto:factor” or “auto”. “factor” is a float number larger
than 1. This option will automatically determine the sel. In detail it
counts the maximal number of neighbors with in the cutoff radius for
each type of neighbor, then multiply the maximum by the “factor”.
Finally the number is wraped up to 4 divisible. The option “auto” is
equivalent to “auto:1.1”.

rcut:
type: float, optional, default: 6.0
argument path: model/descriptor[se_e2_r]/rcut

The cut-off radius.

5.3. Training Parameters 61

DeePMD-kit

rcut_smth:
type: float, optional, default: 0.5
argument path: model/descriptor[se_e2_r]/rcut_smth
Where to start smoothing. For example the 1/r term is smoothed from
rcut to rcut_smth
neuron:
type: list, optional, default: [10, 20, 40]
argument path: model/descriptor[se_e2_r]/neuron
Number of neurons in each hidden layers of the embedding net. When
two layers are of the same size or one layer is twice as large as the previous
layer, a skip connection is built.
activation_function:
type: str, optional, default: tanh
argument path: model/descriptor[se_e2_r]/activation_function

The activation function in the embedding net. Supported activation func-

2 113

tions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”,
“None”, “none”. Note that “gelu” denotes the custom operator version,
and “gelu_tf” denotes the TF standard version. If you set “None” or
“none” here, no activation function will be used.

resnet_dt:
type: bool, optional, default: False
argument path: model/descriptor[se_e2_r]/resnet_dt
Whether to use a “Timestep” in the skip connection

type_one_side:
type: bool, optional, default: False
argument path: model/descriptor[se_e2_r]/type_one_side
If true, the embedding network parameters vary by types of neigh-
bor atoms only, so there will be $N_text{types}$ sets of embedding net-
work parameters. Otherwise, the embedding network parameters vary
by types of centric atoms and types of neighbor atoms, so there will be
$N_text{types} 2% sets of embedding network parameters.

precision:
type: str, optional, default: default
argument path: model/descriptor[se_e2_r]/precision

The precision of the embedding net parameters, supported options are
“default”, “floatl6”, “float32”, “float64”, “bfloat16”. Default follows the
interface precision.

trainable:
type: bool, optional, default: True
argument path: model/descriptor[se_e2_r]/trainable
If the parameters in the embedding net are trainable

seed:

type: NoneType | int, optional

62 Chapter 5.

Training

DeePMD-kit

argument path: model/descriptor[se_e2_r]/seed
Random seed for parameter initialization

exclude_types:
type: 1ist, optional, default: []
argument path: model/descriptor[se_e2_r]/exclude_types

The excluded pairs of types which have no interaction with each other.
For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg_zero:
type: bool, optional, default: False
argument path: model/descriptor[se_e2_r]/set_davg_zero

Set the normalization average to zero. This option should be set when
atom_ener in the energy fitting is used

When type is set to hybrid:
list:
type: 1list
argument path: model/descriptor [hybrid] /list

A list of descriptor definitions
When type is set to se_atten:

sel:
type: str|int | 1ist, optional, default: auto
argument path: model/descriptor[se_atten]/sel

This parameter set the number of selected neighbors. Note that this pa-
rameter is a little different from that in other descriptors. Instead of sepa-
rating each type of atoms, only the summation matters. And this number
is highly related with the efficiency, thus one should not make it too large.
Usually 200 or less is enough, far away from the GPU limitation 4096. It
can be:

¢ int. The maximum number of neighbor atoms to be considered. We
recommend it to be less than 200.

o List[int]. The length of the list should be the same as the number of
atom types in the system. selli] gives the selected number of type-i
neighbors. Only the summation of sel[i] matters, and it is recommended
to be less than 200. - str. Can be “auto:factor” or “auto”. “factor” is a
float number larger than 1. This option will automatically determine
the sel. In detail it counts the maximal number of neighbors with in the
cutoff radius for each type of neighbor, then multiply the maximum by
the “factor”. Finally the number is wraped up to 4 divisible. The option
“auto” is equivalent to “auto:1.17.

rcut:
type: float, optional, default: 6.0
argument path: model/descriptor[se_atten]/rcut
The cut-off radius.

rcut_smth:

type: float, optional, default: 0.5

5.3. Training Parameters

63

DeePMD-kit

argument path: model/descriptor [se_atten] /rcut_smth

Where to start smoothing. For example the 1/r term is smoothed from
rcut to rcut_smth

neuron:
type: list, optional, default: [10, 20, 40]
argument path: model/descriptor [se_atten] /neuron
Number of neurons in each hidden layers of the embedding net. When
two layers are of the same size or one layer is twice as large as the previous
layer, a skip connection is built.

axis_neuron:
type: int, optional, default: 4, alias: n_axis_neuron
argument path: model/descriptor[se_atten]/axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:
type: str, optional, default: tanh
argument path: model/descriptor[se_atten]/activation_function
The activation function in the embedding net. Supported activation func-
tions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”,
“None”, “none”. Note that “gelu” denotes the custom operator version,
and “gelu_tf” denotes the TF standard version. If you set “None” or
“none” here, no activation function will be used.

resnet_dt:

type: bool, optional, default: False
argument path: model/descriptor[se_atten] /resnet_dt

Whether to use a “Timestep” in the skip connection

type_one_side:
type: bool, optional, default: False
argument path: model/descriptor[se_atten] /type_one_side
If true, the embedding network parameters vary by types of neigh-
bor atoms only, so there will be $N_text{types}$ sets of embedding net-
work parameters. Otherwise, the embedding network parameters vary
by types of centric atoms and types of neighbor atoms, so there will be
$N_text{types} 2% sets of embedding network parameters.

precision:
type: str, optional, default: default
argument path: model/descriptor [se_atten]/precision
The precision of the embedding net parameters, supported options are

“default”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the
interface precision.

trainable:

type: bool, optional, default: True
argument path: model/descriptor[se_atten] /trainable

If the parameters in the embedding net is trainable

64 Chapter 5. Training

DeePMD-kit

seed:
type: NoneType | int, optional
argument path: model/descriptor[se_atten]/seed

Random seed for parameter initialization

exclude_types:
type: 1list, optional, default: []
argument path: model/descriptor[se_atten]/exclude_types
The excluded pairs of types which have no interaction with each other.
For example, [[0, 1]] means no interaction between type 0 and type 1.
set_davg_zero:
type: bool, optional, default: True
argument path: model/descriptor[se_atten]/set_davg_zero
Set the normalization average to zero. This option should be set when
se_atten descriptor or atom_ener in the energy fitting is used
attn:
type: int, optional, default: 128
argument path: model/descriptor[se_atten] /attn

The length of hidden vectors in attention layers

attn_layer:
type: int, optional, default: 2
argument path: model/descriptor[se_atten]/attn_layer

The number of attention layers

attn_dotr:
type: bool, optional, default: True
argument path: model/descriptor[se_atten]/attn_dotr

Whether to do dot product with the normalized relative coordinates

attn_mask:
type: bool, optional, default: False
argument path: model/descriptor[se_atten]/attn_mask

Whether to do mask on the diagonal in the attention matrix
When type is set to se_a_mask:

sel:
type: str | 1list, optional, default: auto
argument path: model/descriptor[se_a_mask]/sel

This parameter sets the number of selected neighbors for each type of

atom. It can be:

o List[int]. The length of the list should be the same as the number of
atom types in the system. sel[i] gives the selected number of type-i
neighbors. sel[i] is recommended to be larger than the maximally pos-
sible number of type-i neighbors in the cut-off radius. It is noted that
the total sel value must be less than 4096 in a GPU environment.

5.3. Training Parameters 65

DeePMD-kit

e str. Can be “auto:factor” or “auto”. “factor” is a float number larger
than 1. This option will automatically determine the sel. In detail it
counts the maximal number of neighbors with in the cutoff radius for
each type of neighbor, then multiply the maximum by the “factor”.
Finally the number is wraped up to 4 divisible. The option “auto” is
equivalent to “auto:1.1”.

neuron:
type: list, optional, default: [10, 20, 40]
argument path: model/descriptor[se_a_mask]/neuron
Number of neurons in each hidden layers of the embedding net. When
two layers are of the same size or one layer is twice as large as the previous
layer, a skip connection is built.
axis_neuron:
type: int, optional, default: 4, alias: n_axis_neuron
argument path: model/descriptor[se_a_mask]/axis_neuron

Size of the submatrix of G (embedding matrix).

activation_function:

type: str, optional, default: tanh
argument path:
model/descriptor[se_a_mask]/activation_function

The activation function in the embedding net. Supported activation func-
tions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”,
“None”, “none”. Note that “gelu” denotes the custom operator version,
and “gelu_tf” denotes the TF standard version. If you set “None” or
“none” here, no activation function will be used.
resnet_dt:
type: bool, optional, default: False
argument path: model/descriptor [se_a_mask]/resnet_dt
Whether to use a “Timestep” in the skip connection
type_one_side:
type: bool, optional, default: False
argument path: model/descriptor [se_a_mask]/type_one_side
If true, the embedding network parameters vary by types of neighbor
atoms only, so there will be $N_text{types}$ sets of embedding net-
work parameters. Otherwise, the embedding network parameters vary
by types of centric atoms and types of neighbor atoms, so there will be
$N_text{types} 2$ sets of embedding network parameters.
exclude_types:
type: 1ist, optional, default: []
argument path: model/descriptor[se_a_mask]/exclude_types
The excluded pairs of types which have no interaction with each other.
For example, [[0, 1]] means no interaction between type 0 and type 1.
precision:

type: str, optional, default: default

66 Chapter 5. Training

DeePMD-kit

argument path: model/descriptor[se_a_mask] /precision

The precision of the embedding net parameters, supported options are
“default”, “floatl6”, “float32”, “float64”, “bfloatl6”. Default follows the
interface precision.

trainable:
type: bool, optional, default: True
argument path: model/descriptor[se_a_mask]/trainable

If the parameters in the embedding net is trainable

seed:
type: NoneType | int, optional
argument path: model/descriptor[se_a_mask]/seed

Random seed for parameter initialization

fitting_net:
type: dict, optional
argument path: model/fitting_net

The fitting of physical properties.
Depending on the value of type, different sub args are accepted.

type:
type: str (flag key), default: ener
argument path: model/fitting net/type
possible choices: ener, dipole, polar

The type of the fitting. See explanation below.

e ener: Fit an energy model (potential energy surface).

¢ dipole: Fit an atomic dipole model. Global dipole labels or atomic dipole
labels for all the selected atoms (see sel type) should be provided by
dipole.npy in each data system. The file either has number of frames
lines and 3 times of number of selected atoms columns, or has number
of frames lines and 3 columns. See loss parameter.

¢ polar: Fit an atomic polarizability model. Global polarizazbility labels
or atomic polarizability labels for all the selected atoms (see sel type)
should be provided by polarizability.npy in each data system. The file
eith has number of frames lines and 9 times of number of selected atoms
columns, or has number of frames lines and 9 columns. See loss param-
eter.

When type is set to ener:

numb_fparam:
type: int, optional, default: 0
argument path: model/fitting_net[ener]/numb_fparam
The dimension of the frame parameter. If set to >0, file fparam.npy
should be included to provided the input fparams.
numb_aparam:
type: int, optional, default: 0
argument path: model/fitting_net[ener]/numb_aparam

The dimension of the atomic parameter. If set to >0, file aparam.npy
should be included to provided the input aparams.

5.3. Training Parameters 67

DeePMD-kit

neuron:
type: list, optional, default: [120, 120, 120], alias: n_neuron
argument path: model/fitting_net [ener]/neuron
The number of neurons in each hidden layers of the fitting net. When two
hidden layers are of the same size, a skip connection is built.
activation_function:
type: str, optional, default: tanh
argument path: model/fitting net[ener]/activation_function

The activation function in the fitting net. Supported activation func-
tions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”,

)

“None”, “none”. Note that “gelu” denotes the custom operator version,
and “gelu_tf” denotes the TF standard version. If you set “None” or
“none” here, no activation function will be used.

precision:
type: str, optional, default: default
argument path: model/fitting_net[ener]/precision
The precision of the fitting net parameters, supported options are “de-
fault”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the in-
terface precision.

resnet_dt:

type: bool, optional, default: True
argument path: model/fitting net[ener]/resnet_dt

Whether to use a “Timestep” in the skip connection

trainable:
type: bool | list, optional, default: True
argument path: model/fitting net[ener]/trainable
Whether the parameters in the fitting net are trainable. This option can

be

e bool: True if all parameters of the fitting net are trainable, False other-
wise.

e list of bool: Specifies if each layer is trainable. Since the fitting net is
composed by hidden layers followed by a output layer, the length of
tihs list should be equal to len(neuron)-+1.

rcond:

type: float, optional, default: 0.001
argument path: model/fitting_net [ener]/rcond

The condition number used to determine the inital energy shift for each
type of atoms.

seed:
type: NoneType | int, optional
argument path: model/fitting_net[ener]/seed
Random seed for parameter initialization of the fitting net

atom_ener:

type: list, optional, default: []

68 Chapter 5. Training

DeePMD-kit

argument path: model/fitting_net[ener]/atom_ener
Specify the atomic energy in vacuum for each type

layer_name:
type: 1ist, optional
argument path: model/fitting_net[ener]/layer_name
The name of the each layer. The length of this list should be equal to
n_neuron + 1. If two layers, either in the same fitting or different fittings,
have the same name, they will share the same neural network parameters.
The shape of these layers should be the same. If null is given for a layer,
parameters will not be shared.

use_aparam_as_mask:
type: bool, optional, default: False
argument path: model/fitting net[ener]/use_aparam_as_mask
Whether to use the aparam as a mask in input.If True, the aparam will
not be used in fitting net for embedding. When descrpt is se_a_mask, the

aparam will be used as a mask to indicate the input atom is real/virtual.
And use_aparam_as_mask should be set to True.

When type is set to dipole:

neuron:
type: list, optional, default: [120, 120, 120], alias: n_neuron
argument path: model/fitting net[dipole]/neuron
The number of neurons in each hidden layers of the fitting net. When two
hidden layers are of the same size, a skip connection is built.
activation_function:
type: str, optional, default: tanh
argument path: model/fitting net[dipole]/activation_function
The activation function in the fitting net. Supported activation func-
tions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”,
“None”, “none”. Note that “gelu” denotes the custom operator version,
and “gelu_tf” denotes the TF standard version. If you set “None” or
“none” here, no activation function will be used.
resnet_dt:
type: bool, optional, default: True
argument path: model/fitting net[dipole]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:
type: str, optional, default: default
argument path: model/fitting net[dipole]/precision

The precision of the fitting net parameters, supported options are “de-
fault”, “float16”, “float32”, “float64”, “bfloatl6”. Default follows the in-
terface precision.

sel_type:
type: int | NoneType | 1ist, optional, alias: dipole type

5.3. Training Parameters 69

DeePMD-kit

argument path: model/fitting_net[dipolel/sel_type

The atom types for which the atomic dipole will be provided. If not set,
all types will be selected.
seed:
type: NoneType | int, optional
argument path: model/fitting_net[dipole] /seed
Random seed for parameter initialization of the fitting net

When type is set to polar:

neuron:
type: list, optional, default: [120, 120, 120], alias: n_neuron
argument path: model/fitting_net [polar]/neuron
The number of neurons in each hidden layers of the fitting net. When two
hidden layers are of the same size, a skip connection is built.
activation_function:
type: str, optional, default: tanh
argument path: model/fitting net[polar]/activation_function
The activation function in the fitting net. Supported activation func-
tions are “relu”, “relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”,
“None”, “none”. Note that “gelu” denotes the custom operator version,
and “gelu_tf” denotes the TF standard version. If you set “None” or
“none” here, no activation function will be used.
resnet_dt:
type: bool, optional, default: True
argument path: model/fitting_net [polar]/resnet_dt

Whether to use a “Timestep” in the skip connection

precision:
type: str, optional, default: default
argument path: model/fitting_net [polar]/precision
The precision of the fitting net parameters, supported options are “de-

fault”, “float16”, “float32”, “float64”, “bfloat16”. Default follows the in-
terface precision.

fit_diag:
type: bool, optional, default: True
argument path: model/fitting_net[polar]/fit_diag
Fit the diagonal part of the rotational invariant polarizability matrix,
which will be converted to normal polarizability matrix by contracting
with the rotation matrix.
scale:
type: float | list, optional, default: 1.0
argument path: model/fitting net[polar]/scale

The output of the fitting net (polarizability matrix) will be scaled by scale

70 Chapter 5. Training

DeePMD-kit

shift_diag:
type: bool, optional, default: True
argument path: model/fitting_net[polar]/shift_diag

Whether to shift the diagonal of polar, which is beneficial to training. De-
fault is true.
sel_type:
type: int | NoneType | list, optional, alias: pol_type
argument path: model/fitting net[polar]/sel_type
The atom types for which the atomic polarizability will be provided. If
not set, all types will be selected.
seed:
type: NoneType | int, optional
argument path: model/fitting_net[polar]/seed

Random seed for parameter initialization of the fitting net

fitting_net_dict:
type: dict, optional
argument path: model/fitting_net_dict
The dictionary of multiple fitting nets in multi-task mode. Each fit-
ting net_dict[fitting_key] is the single definition of fitting of physical properties
with user-defined name fitting_key.
modifier:
type: dict, optional
argument path: model/modifier
The modifier of model output.

Depending on the value of type, different sub args are accepted.
type:

type: str (flag key)

argument path: model/modifier/type

possible choices: dipole_charge

The type of modifier. See explanation below.

-dipole charge: Use WFCC to model the electronic structure of the sys-
tem. Correct the long-range interaction

When type is set to dipole_charge:
model_name:

type: str
argument path: model/modifier [dipole_charge] /model_name

The name of the frozen dipole model file.
model_charge_map:
type: 1list
argument path: model/modifier [dipole_charge] /model_charge_map

The charge of the WFCC. The list length should be the same as the
sel type.

5.3. Training Parameters 71

DeePMD-kit

sys_charge_map:
type: 1list
argument path: model/modifier [dipole_charge] /sys_charge_map
The charge of real atoms. The list length should be the same as the
type map
ewald_beta:
type: float, optional, default: 0.4
argument path: model/modifier [dipole_charge] /ewald_beta
The splitting parameter of Ewald sum. Unit is A*-1

ewald_h:
type: float, optional, default: 1.0
argument path: model/modifier[dipole_charge] /ewald_h
The grid spacing of the FFT grid. Unitis A

compress:
type: dict, optional
argument path: model/compress

Model compression configurations

Depending on the value of type, different sub args are accepted.
type:

type: str (flag key), default: se_e2_a

argument path: model/compress/type

possible choices: se_e2 a

The type of model compression, which should be consistent with the de-
scriptor type.

When type is set to se_e2_a (or its alias se_a):
model_file:

type: str
argument path: model/compress[se_e2_al/model_file

The input model file, which will be compressed by the DeePMD-kit.

table_config:
type: 1list
argument path: model/compress[se_e2_al/table_config
The arguments of model compression, including extrapolate(scale of
model extrapolation), stride(uniform stride of tabulation’s first and sec-
ond table), and frequency(frequency of tabulation overflow check).
min_nbor_dist:
type: float

argument path: model/compress[se_e2_al/min_nbor_dist

The nearest distance between neighbor atoms saved in the frozen model.

72 Chapter 5. Training

DeePMD-kit

learning_rate:

type: dict, optional
argument path: learning_rate

The definitio of learning rate

scale_by_worker:
type: str, optional, default: linear

argument path: learning_rate/scale_by_worker

When parallel training or batch size scaled, how to alter learning rate. Valid
values are linear'(default), ‘sqrt or none.

Depending on the value of type, different sub args are accepted.
type:
type: str (flag key), default: exp

argument path: learning_rate/type
possible choices: ezp

The type of the learning rate.
When type is set to exp:

start_1r:
type: float, optional, default: 0.001
argument path: learning_rate[exp] /start_lr

The learning rate the start of the training.

stop_1r:
type: float, optional, default: 1e-08
argument path: learning rate[exp]/stop_lr

The desired learning rate at the end of the training.

decay_steps:
type: int, optional, default: 5000
argument path: learning_rate[exp] /decay_steps

The learning rate is decaying every this number of training steps.

learning_rate_dict:

loss:

type: dict, optional
argument path: learning rate_dict

The dictionary of definitions of learning rates in multi-task mode. Each learn-
ing rate dict[fitting key], with user-defined name fitting key in model/fitting net_dict, is
the single definition of learning rate.

type: dict, optional
argument path: loss

The definition of loss function. The loss type should be set to tensor, ener or left unset.

Depending on the value of type, different sub args are accepted.

5.3. Training Parameters 73

DeePMD-kit

type:
type: str (flag key), default: ener
argument path: loss/type
possible choices: ener, tensor

The type of the loss. When the fitting type is ener, the loss type should be set to
ener or left unset. When the fitting type is dipole or polar, the loss type should
be set to tensor.

When type is set to ener:

start_pref_e:
type: float | int, optional, default: 0.02
argument path: loss[ener] /start_pref_e

The prefactor of energy loss at the start of the training. Should be larger
than or equal to 0. If set to none-zero value, the energy label should be pro-
vided by file energy.npy in each data system. If both start pref energy and
limit_pref energy are set to 0, then the energy will be ignored.

limit_pref_e:
type: float | int, optional, default: 1.0
argument path: loss[ener]/limit_pref_e
The prefactor of energy loss at the limit of the training, Should be larger than or
equal to 0. i.e. the training step goes to infinity.

start_pref_f:
type: float | int, optional, default: 1000
argument path: loss[ener]/start_pref_f
The prefactor of force loss at the start of the training. Should be larger than or
equal to 0. If set to none-zero value, the force label should be provided by file
force.npy in each data system. If both start_pref force and limit_pref force are
set to 0, then the force will be ignored.

limit_pref_f:
type: float | int, optional, default: 1.0
argument path: loss[ener] /limit_pref_f
The prefactor of force loss at the limit of the training, Should be larger than or
equal to 0. i.e. the training step goes to infinity.

start_pref_v:
type: float | int, optional, default: 0.0
argument path: loss[ener] /start_pref_v
The prefactor of virial loss at the start of the training. Should be larger than or
equal to 0. If set to none-zero value, the virial label should be provided by file
virial.npy in each data system. If both start_pref virial and limit pref virial are
set to 0, then the virial will be ignored.

limit_pref_v:
type: float | int, optional, default: 0.0
argument path: loss[ener] /limit_pref_v

The prefactor of virial loss at the limit of the training, Should be larger than or
equal to 0. i.e. the training step goes to infinity.

74 Chapter 5. Training

DeePMD-kit

start_pref_ae:
type: float | int, optional, default: 0.0
argument path: loss[ener]/start_pref_ae
The prefactor of atom_ener loss at the start of the training. Should be larger than
or equal to 0. If set to none-zero value, the atom_ener label should be provided

by file atom_ener.npy in each data system. If both start pref atom_ ener and
limit_pref atom_ener are set to 0, then the atom_ener will be ignored.

limit_pref_ae:
type: float | int, optional, default: 0.0
argument path: loss[ener] /limit_pref_ae
The prefactor of atom_ener loss at the limit of the training, Should be larger than
or equal to 0. i.e. the training step goes to infinity.
start_pref_pf:
type: float | int, optional, default: 0.0
argument path: loss[ener]/start_pref_pf
The prefactor of atom_pref loss at the start of the training. Should be larger than
or equal to 0. If set to none-zero value, the atom_pref label should be provided
by file atom_pref.npy in each data system. If both start pref atom pref and
limit_pref atom_ pref are set to 0, then the atom_pref will be ignored.
limit_pref_pf:
type: float | int, optional, default: 0.0
argument path: loss[ener] /limit_pref_pf
The prefactor of atom_pref loss at the limit of the training, Should be larger than
or equal to 0. i.e. the training step goes to infinity.
relative_f£f:
type: float | NoneType, optional
argument path: loss[ener] /relative_f
If provided, relative force error will be used in the loss. The difference of force
will be normalized by the magnitude of the force in the label with a shift given
by relative f, i.e. DF i/ (|| F | + relative f) with DF denoting the difference
between prediction and label and || F || denoting the L2 norm of the label.
enable_atom_ener_coeff:
type: bool, optional, default: False
argument path: loss[ener] /enable_atom_ener_coeff

If true, the energy will be computed as sum_ic i E_i. ¢_ishould be provided by
file atom_ener coeff.npy in each data system, otherwise it’s 1.

When type is set to tensor:

pref:
type: float | int
argument path: loss[tensor]/pref

The prefactor of the weight of global loss. It should be larger than or equal to 0. If
controls the weight of loss corresponding to global label, i.e. ‘polarizability.npy"
or dipole.npy, whose shape should be #frames x [9 or 3]. If it’s larger than 0.0,
this npy should be included.

5.3. Training Parameters

75

DeePMD-kit

pref_atomic:

loss_dict:

type: float | int
argument path: loss[tensor] /pref_atomic

The prefactor of the weight of atomic loss. It should be larger than or
equal to 0. If controls the weight of loss corresponding to atomic label, i.e.
atomic_polarizability.npy or atomic_dipole.npy, whose shape should be #frames
x ([9 or 3] x #selected atoms). If it’s larger than 0.0, this npy should be included.
Both pref and pref _atomic should be provided, and either can be set to 0.0.

type: dict, optional

argument path: loss_dict

The dictionary of definitions of multiple loss functions in multi-task mode. Each
loss_dict[fitting_key], with user-defined name fitting key in model/fitting net_dict, is the
single definition of loss function, whose type should be set to tensor, ener or left unset.

training:

type: dict

argument path: training

The training options.

training_data:

type: dict, optional
argument path: training/training_data

Configurations of training data.

systems:
type: str|list
argument path: training/training_data/systems

The data systems for training. This key can be provided with a list that
specifies the systems, or be provided with a string by which the prefix of all
systems are given and the list of the systems is automatically generated.

set_prefix:
type: str, optional, default: set
argument path: training/training_data/set_prefix

The prefix of the sets in the systems.

batch_size:
type: int | str | list, optional, default: auto
argument path: training/training_data/batch_size

This key can be

o list: the length of which is the same as the systems. The batch size of
each system is given by the elements of the list.

e int: all systems use the same batch size.

e string “auto”: automatically determines the batch size so that the
batch_size times the number of atoms in the system is no less than 32.

e string “auto:N”: automatically determines the batch size so that the
batch_size times the number of atoms in the system is no less than N.

76

Chapter 5. Training

DeePMD-kit

e string “mixed:N”: the batch data will be sampled from all systems and
merged into a mixed system with the batch size N. Only support the
se_atten descriptor.

auto_prob:
type: str, optional, default: prob_sys_size, alias: auto_prob_style
argument path: training/training_data/auto_prob

Determine the probability of systems automatically. The method is as-

signed by this key and can be

¢ “prob_uniform” : the probability all the systems are equal, namely
1.0/self.get_nsystems()

e “prob_sys size” : the probability of a system is proportional to the num-
ber of batches in the system

e “prob_sys size;stt_idx:end idx:weight;stt_idx:end idx:weight;. .”
: the list of systems is devided into blocks. A block is specified by
stt_idx:end_idx:weight, where stt idx is the starting index of the
system, end_idx is then ending (not including) index of the system, the
probabilities of the systems in this block sums up to weight, and the
relatively probabilities within this block is proportional to the number
of batches in the system.

sys_probs:
type: NoneType | 1ist, optional, default: None, alias: sys_weights
argument path: training/training data/sys_probs
A list of float if specified. Should be of the same length as systems, speci-
fying the probability of each system.
validation_data:
type: dict | NoneType, optional, default: None
argument path: training/validation_data
Configurations of validation data. Similar to that of training data, except that a
numb_btch argument may be configured
systems:
type: str|list
argument path: training/validation_data/systems
The data systems for validation. This key can be provided with a list that
specifies the systems, or be provided with a string by which the prefix of all
systems are given and the list of the systems is automatically generated.
set_prefix:
type: str, optional, default: set
argument path: training/validation_data/set_prefix

The prefix of the sets in the systems.

batch_size:
type: int | str | 1ist, optional, default: auto
argument path: training/validation_data/batch_size

This key can be

o list: the length of which is the same as the systems. The batch size of
each system is given by the elements of the list.

o int: all systems use the same batch size.

5.3. Training Parameters 77

DeePMD-kit

e string “auto”: automatically determines the batch size so that the
batch_size times the number of atoms in the system is no less than 32.

e string “auto:N”: automatically determines the batch size so that the
batch_size times the number of atoms in the system is no less than N.

auto_prob:

type: str, optional, default: prob_sys_size, alias: auto_prob_style
argument path: training/validation_data/auto_prob

Determine the probability of systems automatically. The method is as-

signed by this key and can be

e “prob_uniform” : the probability all the systems are equal, namely
1.0/self.get_nsystems()

o “prob_sys_size” : the probability of a system is proportional to the num-
ber of batches in the system

o “prob_sys_size;stt_idx:end idx:weight;stt_idx:end_idx:weight;...”
: the list of systems is devided into blocks. A block is specified by
stt_idx:end_idx:weight, where stt idx is the starting index of the
system, end_idx is then ending (not including) index of the system, the
probabilities of the systems in this block sums up to weight, and the
relatively probabilities within this block is proportional to the number
of batches in the system.

sys_probs:

type: NoneType | list, optional, default: None, alias: sys_weights
argument path: training/validation_data/sys_probs

A list of float if specified. Should be of the same length as systems, speci-
fying the probability of each system.

numb_btch:

type: int, optional, default: 1, alias: numb_batch
argument path: training/validation_data/numb_btch

An integer that specifies the number of batches to be sampled for each
validation period.

mixed_precision:
type: dict, optional
argument path: training/mixed_precision

Configurations of mixed precision.

output_prec:

type: str, optional, default: float32
argument path: training/mixed_precision/output_prec
The precision for mixed precision params. ” “The trainable variables pre-

cision during the mixed precision training process, ” “supported options
are float32 only currently.

compute_prec:

type: str
argument path: training/mixed_precision/compute_prec

7

The precision for mixed precision compute. “The compute precision
during the mixed precision training process, “” “supported options are
float16 and bfloat16 currently.

78

Chapter 5.

Training

DeePMD-kit

numb_steps:
type: int, alias: stop_batch
argument path: training/numb_steps

Number of training batch. Each training uses one batch of data.

seed:
type: NoneType | int, optional
argument path: training/seed
The random seed for getting frames from the training data set.
disp_file:
type: str, optional, default: 1curve.out
argument path: training/disp_file

The file for printing learning curve.
disp_freq:

type: int, optional, default: 1000

argument path: training/disp_freq

The frequency of printing learning curve.

save_freq:
type: int, optional, default: 1000
argument path: training/save_freq
The frequency of saving check point.
save_ckpt:
type: str, optional, default: model.ckpt
argument path: training/save_ckpt
The file name of saving check point.
disp_training:
type: bool, optional, default: True
argument path: training/disp_training
Displaying verbose information during training,.
time_training:
type: bool, optional, default: True
argument path: training/time_training
Timing durining training.
profiling:
type: bool, optional, default: False
argument path: training/profiling
Profiling during training.
profiling_file:
type: str, optional, default: timeline. json
argument path: training/profiling file

Output file for profiling.

5.3.

Training Parameters

79

DeePMD-kit

enable_profiler:
type: bool, optional, default: False
argument path: training/enable_profiler
Enable TensorFlow Profiler (available in TensorFlow 2.3) to analyze perfor-
mance. The log will be saved to tensorboard log_dir.
tensorboard:

type: bool, optional, default: False
argument path: training/tensorboard

Enable tensorboard

tensorboard_log_dir:
type: str, optional, default: log
argument path: training/tensorboard_log_dir

The log directory of tensorboard outputs

tensorboard_freq:
type: int, optional, default: 1
argument path: training/tensorboard_freq

The frequency of writing tensorboard events.

data_dict:
type: dict, optional
argument path: training/data_dict
The dictionary of multi DataSystems in multi-task mode. Each
data_dict[fitting_key], with user-defined name fitting key in
model/fitting_net_dict, contains training data and optional validation data
definitions.

fitting_weight:
type: dict, optional
argument path: training/fitting_weight
Each fitting weight[fitting key], with user-defined name fitting key in
model/fitting net,_dict, is the training weight of fitting net fitting key. Fitting
nets with higher weights will be selected with higher probabilities to be trained

in one step. Weights will be normalized and minus ones will be ignored. If not
set, each fitting net will be equally selected when training.

nvnmd :
type: dict, optional
argument path: nvnmd
The nvnmd options.
net_size:

type: int
argument path: nvnmd/net_size

configuration the number of nodes of fitting net, just can be set as 128

80 Chapter 5. Training

DeePMD-kit

map_file:
type: str
argument path: nvnmd/map_file

A file containing the mapping tables to replace the calculation of embedding nets

config file:
type: str
argument path: nvnmd/config_file
A file containing the parameters about how to implement the model in certain
hardware
weight_file:
type: str
argument path: nvnmd/weight_file

a *.npy file containing the weights of the model

enable:
type: bool
argument path: nvnmd/enable

enable the nvnmd training

restore_descriptor:
type: bool
argument path: nvnmd/restore_descriptor

enable to restore the parameter of embedding_net from weight.npy

restore_fitting_net:
type: bool
argument path: nvnmd/restore_fitting_net

enable to restore the parameter of fitting net from weight.npy

quantize_descriptor:
type: bool
argument path: nvnmd/quantize_descriptor

enable the quantizatioin of descriptor

quantize_fitting net:
type: bool
argument path: nvnmd/quantize_fitting net

enable the quantizatioin of fitting net

5.3. Training Parameters 81

DeePMD-kit

5.4 Parallel training

Currently, parallel training is enabled in a synchronized way with help of Horovod. Depending on the num-
ber of training processes (according to MPI context) and the number of GPU cards available, DeePMD-kit
will decide whether to launch the training in parallel (distributed) mode or in serial mode. Therefore, no
additional options are specified in your JSON/Y AML input file.

5.4.1 Tuning learning rate

Horovod works in the data-parallel mode, resulting in a larger global batch size. For example, the real batch
size is 8 when batch size is set to 2 in the input file and you launch 4 workers. Thus, learning rate is auto-
matically scaled by the number of workers for better convergence. Technical details of such heuristic rule
are discussed at Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour.

The number of decay steps required to achieve the same accuracy can decrease by the number of cards (e.g.,
1/2 of steps in the above case), but needs to be scaled manually in the input file.

In some cases, it won’t work well when scaling the learning rate by worker count in a 1inear way. Then you
can try sqrt or none by setting argument scale by worker like below.

"learning_rate" :{
"scale_by_worker": '"none",
Iltypell . n eXpH

5.4.2 Scaling test

Testing examples/water/se_e2_a on an 8-GPU host, linear acceleration can be observed with the increasing
number of cards.

Num of GPU cards Seconds every 100 samples Samples per second Speed up

1 1.4515 68.89 1.00
2 1.5962 62.65*2 1.82
4 1.7635 56.71*4 3.29
8 1.7267 57.91*8 6.72

5.4.3 How to use

Training workers can be launched with horovodrun. The following command launches 4 processes on the
same host:

CUDA_VISIBLE_DEVICES=4,5,6,7 horovodrun -np 4 \
dp train --mpi-log=workers input.json

Need to mention, the environment variable CUDA_VISIBLE_DEVICES must be set to control parallelism on the
occupied host where one process is bound to one GPU card.

To maximize the performance, one should follow FAQ: How to control the parallelism of a job to control the
number of threads.

82 Chapter 5. Training

https://github.com/horovod/horovod
https://arxiv.org/abs/1706.02677

DeePMD-kit

When using MPI with Horovod, horovodrun is a simple wrapper around mpirun. In the case where fine-
grained control over options is passed to mpirun, mpirun can be invoked directly, and it will be detected
automatically by Horovod, e.g.,

CUDA_VISIBLE DEVICES=4,5,6,7 mpirun -1 -launcher=fork -hosts=localhost -np 4 \
dp train --mpi-log=workers input.json

this is sometimes necessary for an HPC environment.

Whether distributed workers are initiated can be observed in the “Summary of the training” section in the
log (world size > 1, and distributed).

[0] DEEPMD INFO ——-Summary of the training-—------—---——-———————————————————————————
[0] DEEPMD INFO distributed

[0] DEEPMD INFO world size: 4

[0] DEEPMD INFO my rank: 0

[0] DEEPMD INFO node list: ['exp-13-57"']

[0] DEEPMD INFO running on: exp-13-57

[0] DEEPMD INFO computing device: gpu:0

[0] DEEPMD INFO CUDA_VISIBLE_DEVICES: 0,1,2,3
[0] DEEPMD INFO Count of visible GPU: 4

[0] DEEPMD INFO num_intra_threads:
[0] DEEPMD INFO num_inter_threads:
[0] DEEPMD INFO ————m—mmmmmm e m e e e e

5.4.4 Logging

What’s more, 2 command-line arguments are defined to control the logging behavior when performing par-
allel training with MPI.

optional arguments:

-1 LOG_PATH, --log-path LOG_PATH
set log file to log messages to disk, if not
specified, the logs will only be output to console
(default: None)

-m {master,collect,workers}, --mpi-log {master,collect,workers}
Set the manner of logging when running with MPI.
'master' logs only on main process, 'collect'
broadcasts logs from workers to master and 'workers'
means each process will output its own log (default:
master)

5.5 Multi-task training

5.5.1 Perform the multi-task training

Training on multiple data sets (each data set contains several data systems) can be performed in multi-task
mode, with one common descriptor and multiple specific fitting nets for each data set. One can simply switch
the following parameters in training input script to perform multi-task mode:

o fitting net —> fitting net_dict, each key of which can be one individual fitting net.

5.5. Multi-task training 83

https://horovod.readthedocs.io/en/stable/mpi_include.html

DeePMD-kit

e training data, validation data —> data_dict, each key of which can be one individual data set con-
tains several data systems for corresponding fitting net, the keys must be consistent with those in fit-
ting net_dict.

e loss —> loss_dict, each key of which can be one individual loss setting for corresponding fitting net, the
keys must be consistent with those in fitting net_dict, if not set, the corresponding fitting net will use
the default loss.

¢ (Optional) fitting_weight, each key of which can be a non-negative integer or float, deciding the chosen
probability for corresponding fitting net in training, if not set or invalid, the corresponding fitting net
will not be used.

The training procedure will automatically choose single-task or multi-task mode, based on the above param-
eters. Note that parameters of single-task mode and multi-task mode can not be mixed.

An example input for training energy and dipole in water system can be found here: multi-task input on
water.

The supported descriptors for multi-task mode are listed:
e se a(se e2 a)
e se r(se e2 1)
* se_at (se_e3)
e se atten
¢ hybrid
The supported fitting nets for multi-task mode are listed:
® cner
e dipole
e polar

The output of dp freeze command in multi-task mode can be seen in freeze command.

5.5.2 Initialization from pretrained multi-task model

For advance training in multi-task mode, one can first train the descriptor on several upstream datasets and
then transfer it on new downstream ones with newly added fitting nets. At the second step, you can also
inherit some fitting nets trained on upstream datasets, by merely adding fitting net keys in fitting net dict
and optional fitting net weights in fitting weight.

Take multi-task input on water again for example. You can first train a multi-task model using input script
with the following model part:

"model": {
"type_map" : [nou , nHu] s
"descriptor": {

"type": "se_e2_a",

"sel": [46, 921,
"rcut_smth": 0.5,

"rcut": 6.0,

"neuron": [25, 50, 100],

1,
"fitting_net_dict": {
"water_dipole": {

(continues on next page)

84 Chapter 5. Training

DeePMD-kit

(continued from previous page)

"type": "dipole",
"neuron": [100, 100, 100],

Fo

"water_ener": {
"neuron" : [240, 240, 240],
"resnet_dt": true,

¥

Yo
T

After training, you can freeze this multi-task model into one unit graph:

£$ dp freeze -o graph.pb --united-model }

Then if you want to transfer the trained descriptor and some fitting nets (take water_ener for example) to
newly added datasets with new fitting net water_ener_2, you can modify the model part of the new input
script in a more simplified way:

"model": {
"type_map": ["0", "H"],
"descriptor": {1},
"fitting net_dict": {
"water_ener": {J},
"water_ener_2": {
"neuron": [240, 240, 240],
"resnet_dt": true,

},

It will autocomplete the configurations according to the frozen graph.

Note that for newly added fitting net keys, other parts in the input script, including data_dict and loss dict
(optionally fitting weight), should be set explicitly. While for old fitting net keys, it will inherit the old
configurations if not set.

Finally, you can perform the modified multi-task training from the frozen model with command:

£$ dp train input.json --init_frz_model graph.pb }

5.5.3 Share layers among energy fitting networks

The multi-task training can be used to train multiple levels of energies (e.g. DFT and CCSD(T)) at the same
time. In this situation, one can set model/fitting net[ener]/layer name> to share some of layers among fitting
networks. The architecture of the layers with the same name should be the same.

For example, if one want to share the first and the third layers for two three-hidden-layer fitting networks,
the following parameters should be set.

"fitting_net_dict": {
"cesd": {
"neuron": [
240,
240,
240
(continues on next page)

5.5. Multi-task training 85

DeePMD-kit

]’

"layer_name": ["10",

1,
"wb97m": {
"neuron": [
240,
240,
240
Jo

null, "12", null]

"layer_name": ["10", null, "12", null]

(continued from previous page)

5.6 TensorBoard Usage

TensorBoard provides the visualization and tooling needed for machine learning experimentation. Full in-
structions for TensorBoard can be found here.

5.6.1 Highlighted features

DeePMD-kit can now use most of the interesting features enabled by TensorBoard!

e Tracking and visualizing metrics, such as 12 _loss, I12_energy loss and 12 _force loss

e Visualizing the model graph (ops and layers)

¢ Viewing histograms of weights, biases, or other tensors as they change over time.

¢ Viewing summaries of trainable variables

5.6.2 How to use Tensorboard with DeePMD-kit

Before running TensorBoard, make sure you have generated summary data in a log directory by modifying
the input script, setting tensorboard to true in the training subsection will enable the TensorBoard data

analysis. eg. water se_a.json.

"training" : {
"systems": ["../data/"],
"set_prefix": "set",
"stop_batch": 1000000,
"batch_size": 1,
"seed": 1,
"_comment": " display and restart",
"_comment": " frequencies counted in
"disp_file": "lcurve.out",
"disp_freq": 100,
"numb_test": 10,
"save_freq": 1000,
"save_ckpt": "model.ckpt",

batch",

(continues on next page)

86

Chapter 5. Training

https://tensorflow.google.cn/tensorboard

DeePMD-kit

"disp_training":true,
"time_training":true,
"tensorboard": true,
"tensorboard_log_dir":"log",
"tensorboard_freq": 1000,

"profiling": false,
"profiling file":"timeline. json",
" _comment": "that's all"

L

(continued from previous page)

J

Once you have event files, run TensorBoard and provide the log directory. This should print that Tensor-

Board has started. Next, connect to http://tensorboard server ip:6006.

TensorBoard requires a logdir to read logs from. For info on configuring TensorBoard, run TensorBoard
—help. One can easily change the log name with “tensorboard log dir” and the sampling frequency with

“tensorboard_freq”.

[tensorboard --logdir path/to/logs

5.6.3 Examples
Tracking and visualizing loss metrics(red:train, blue:test)

12_loss

0 50k 100k 150k 200k 250k 300k

350k

400k

450k

5.6. TensorBoard Usage

87

DeePMD-kit

12_ener_loss

12_force_|

0.014

0.012

0.01

8e-3

4e-3

2e-3

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

VMM AR NS

0SS

50k

100k

150k

200k

250k

300k

350k

400k 450k

50k

100k

160k

200k

250k

300k

350k

400k 450k

88

Chapter 5. Training

W_slic..

find_box

DeePMD-kit

Visualizing DeePMD-kit model graph

init init
aradients_1 aradients_1
gradients aradients
rain_step rain_step
save save
T more imore
init init
gradients_1 aradients_1
gradients gradients
rain_step train_step
save ve
T more imore
Reshape...
o aradients_1 S gradients.1
shape in gradients shape o< gradients
¥ 3
= i dients_1 e dients_1
Sice.2
gradients_1
mulo18] Reshape_13 |77~ 37000
#
o_desofi. ardiente1
o, ents_
R gradients
“
concat
axis
mull0-18] — > radients_1 mul[0-18]
srided sic. Reshape_11 K

{ Reshape_1)

mullo-18]

{ Reshape_2)—> DescrptSeA

ttvoe

shape.

tfind_co...

5.6. TensorBoard Usage

Reshape_3

box

gradients _strided_siic.

2| Reshape_8 |

Shapel[0-5]
SO

12_pref f..

Const2 0>

Reshapel2.

gradients 1 mul[0-18]
gradients ~strided_slic.

.| Reshape_12

Mul19
concat_1
axis
.
mull0-18] -
stided_sli. Reshape_9
0

W0
- init it
= gradients_1 gradients_1
filter_type_1 | > oradients gradients
4 vain step. * tran_step
a save
Reshape... Reshape_7
shape O—»C__ > gradients shape gradients.
¥ ¥
mulo16 suams (|
mlo1e] ﬂ
o_rmd
DescrptSeA strided_slic. Reshap DescrptseA |
Reshape_5

89

DeePMD-kit

Viewing histograms of weights, biases, or other tensors as they change over time

filter_type_0/result

PREVIOUS PAGE

filter_type_1

PREVIOUS PAGE

filter_type_1/bias_1_0_1/histogram

-

\
A
L=

. [N

P (i
N

o

-0.5

iy

(@4

VR
)

o
n
o

40000

80000

120000
160000
200000
240000
280000

40000

80000

120000
160000
200000
240000
280000

Page2 of2
NEXT PAGE
NEXT PAGE
filter_type_1/bias_1_1_1/histogram (train.

.
7y

o -

\ \ N &
S S - 40000
= 7A=Y /
A A &
] E A 160000
~"V W N 200000
B— V E //\/ 240000
==/ S .‘ —— 280000
15 05 05 15 25
ra
Ld
filter_type_1/bias_3_0_1/histogram (train.
A

Ao
= s -

S\

2z A

filter_type_1/bias_2_0_1/histogram train.

¥

A

%ks

= 80000
%\i = 120000

—3 160000
Z\/—= 200000
7= — 200000
8- 7= — 280000

1.0 2.0 3.0

filter_type_1/bias_3_1_1/histogram train.

gé’
= e
/%/A\/é\%é%— 80000

90

Chapter 5. Training

DeePMD-kit

filter_type_ O 13
PREVIOUS PAGE NEXT PAGE
filter_type_0/bias_1_0_1/histogram [train. filter_type_0/bias_1_1_1/histogram (train| filter_type_0/bias_2_0_1/histogram train,
I [b [[[[] % } } { i { {
1.5 | 154 2 1
| |]
0.5 | 05 _
i i [
0.5 - 05 4—— 4]
1.5 15 B | | | | | | |
! N S S S -
0 50k 100k 150k 200k 250k 300k 0 50k 100k 150k 200k 250k 300k

T
0 50k 100k 150k 200k 250k 300k

ra
La

ra
La

filter_type_0/bias_2_1_1/histogram (train. filter_type_0/bias_3_0_1/histogram (train| filter_type_0/bias_3_1_1/histogram [train,
[[I I I [I I [I [I | I
O 5 o D I) e A o O O O S
| 15 15
i 05— 051
0 05— 05 4 -
-1 1.5 i 15
R | | [| | | [|
i N S S S o ! o
0 50k 100k 150k 200k 250k 300k 0 50k 100k 150k 200k 250k 300k 0 50k 100k 150k 200k 250k 300k
r1 ra r1
L4 La La
filter_type_0/matrix_1_0_1/histogram [train. filter_type_0/matrix_1_1_1/histogram (train. filter_type_0/matrix_2_0_1/histogram train,
R 08
04 - | 15
i 04 05
ol L —
| . 1 05
0.4 1 e
o I —— o 25
0 50k 100k 150k 200k 250k 300k 0 50k 100k 150k 200k 250k 300l 0 50k 100k 150k 200k 250k 300k
r ra ra
[] Ld Ld

5.6. TensorBoard Usage 91

DeePMD-kit

Viewing summaries of trainable variables

I filter_type_0 “
PREVIOUS PAGE NEXT PAGE
bias_1_0_1/max_1 bias_1_0_1/mean_1 bias_1_0_1/min_1
tag: filter_type_0/bias_1_0_1/max_1 tag: filter_type_0/bias_1_0_1/mean_1 tag: filter_type_0/bias_1_0_1/min_1
B -1.25
1.3
0.108
23 -1.35
0.104 14
28 0.1 1.45
5 -1.5
2.3 0.096
0 40K 80k 120K 160k 0 40k 80k 120k 160k 0 40k 80k 120k 160k
r E E] i runtodownload w cSV JSON © 1 E E] ! wntodownload v csvJUSON L] = El i runto download w SV JSON
bias_1_0_1/stddev_1 bias_1_1_1/max_1 bias_1_1_1/mean_1
tag: filter_type_0/bias_1_0_1/stddev_1 tag: filter_type_0/bias_1_1_1/max_1 tag: filter_type_0/bias_1_1_1/mean_1
081 0.0865
222
0.0855
0.79
2.8 0.0845
7 0.0835
0.77 214
0.0825
076 21 0.0815
0 40k 80k 120k 160k 0 40k 80k 120k 160k 0 40k 80k 120k 160k
nEED S wntodownload v csvuson [= [2] ¥ wntodownload v csvuson [= [1] ¥ runto download + CSV JSON
bias_1_1_1/min_1 bias_1_1_1/stddev_1 bias_2_0_1/max_1
tag: filter_type_0/bias_1_1_1/min_1 tag: filter_type_0/bias_1_1_1/stddev_1 tag: filter_type_0/bias_2_0_1/max_1
162 0.825
242
0.815
1.64 2.38
0.805 .
1.66 2.34
0.795 23

5.6.4 Attention

Allowing the tensorboard analysis will takes extra execution time.(eg, 15% increasing @Nvidia GTX 1080Ti
double precision with default water sample)

TensorBoard can be used in Google Chrome or Firefox. Other browsers might work, but there may be bugs
or performance issues.

5.7 Known limitations of using GPUs

If you use DeePMD-kit in a GPU environment, the acceptable value range of some variables is additionally
restricted compared to the CPU environment due to the software’s GPU implementations:

1. The number of atom types of a given system must be less than 128.

2. The maximum distance between an atom and its neighbors must be less than 128. It can be controlled
by setting the rcut value of training parameters.

92 Chapter 5. Training

DeePMD-kit

3. Theoretically, the maximum number of atoms that a single GPU can accept is about 10,000,000. How-
ever, this value is limited by the GPU memory size currently, usually within 1000,000 atoms even in the
model compression mode.

4. The total sel value of training parameters(in model/descriptor section) must be less than 4096.

5. The size of the last layer of the embedding net must be less than 1024 during the model compression
process.

5.8 Finetune the pretrained model

Pretraining-and-finetuning is a widely used approach in other fields such as Computer Vision (CV) or Nat-
ural Language Processing (NLP) to vastly reduce the training cost, while it’s not trivial in potential models.
Compositions and configurations of data samples or even computational parameters in upstream software
(such as VASP) may be different between the pretrained and target datasets, leading to energy shifts or other
diversities of training data.

Recently the emerging of methods such as DPA-1 has brought us to a new stage where we can perform similar
pretraining-finetuning approaches. DPA-1 can hopefully learn the common knowledge in the pretrained
dataset (especially the force information) and thus reduce the computational cost in downstream training
tasks. If you have a pretrained model pretrained.pb (here we support models using se_atten descriptor
and ener fitting net) on a large dataset (for example, OC2M in DPA-1 paper), a finetuning strategy can be
performed by simply running;:

[$ dp train input.json --finetune pretrained.pb

The command above will change the energy bias in the last layer of the fitting net in pretrained.pb, ac-
cording to the training dataset in input.json.

Warning: Note that the elements in the training dataset must be contained in the pretrained dataset.

The finetune procedure will inherit the model structures in pretrained.pb, and thus it will ignore the model
parameters in input. json, such as descriptor, fitting net, type embedding and type map. However, you
can still set the trainable parameters in each part of input. json to control the training procedure.

To obtain a more simplified script, for example, you can change the model part in input. json to perform
finetuning;:

"model": {
"type map": [uon’ an] s
"type_embedding": {"trainable": true},
"descriptor" : {7},

"fitting_net" : {}

5.8. Finetune the pretrained model 93

https://arxiv.org/abs/2208.08236
https://github.com/Open-Catalyst-Project/ocp/blob/main/DATASET.md
https://arxiv.org/abs/2208.08236

DeePMD-kit

94

Chapter 5. Training

CHAPTER
SIX

FREEZE AND COMPRESS

6.1 Freeze a model

The trained neural network is extracted from a checkpoint and dumped into a protobuf(.pb) file. This process
is called “freezing” a model. The idea and part of our code are from Morgan. To freeze a model, typically
one does

[$ dp freeze -o graph.pb }

in the folder where the model is trained. The output model is called graph.pb.
In multi-task mode:

¢ This process will in default output several models, each of which contains the common descriptor and
one of the user-defined fitting nets in fitting net_dict, let’s name it fitting_key, together frozen in
graph_{fitting_key}.pb. Those frozen models are exactly the same as single-task output with fitting
net fitting_key.

¢ If you add --united-model option in this situation, the total multi-task model will be frozen into one
unit graph. pb, which is mainly for multi-task initialization and can not be used directly for inference.

6.2 Compress a model

Once the frozen model is obtained from DeePMD-kit, we can get the neural network structure and its param-
eters (weights, biases, etc.) from the trained model, and compress it in the following way:

[dp compress —i graph.pb -o graph-compress.pb }

where -1i gives the original frozen model, -o gives the compressed model. Several other command line options
can be passed to dp compress, which can be checked with

£$ dp compress --help }

An explanation will be provided

usage: dp compress [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-m {master,collect,workers}] [-i INPUT] [-o OUTPUT]
[-s STEP] [-e EXTRAPOLATE] [-f FREQUENCY]
[-c CHECKPOINT_FOLDER]

optional arguments:

(continues on next page)

95

https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc

DeePMD-kit

(continued from previous page)

-h, --help show this help message and exit

-v {DEBUG, 3, INFO,2,WARNING, 1,ERROR,0}, --log-level {DEBUG,3,INFO,2,WARNING,1,ERROR,O}
set verbosity level by string or number, O=ERROR,
1=WARNING, 2=INFO and 3=DEBUG (default: INFO)

-1 LOG_PATH, --log-path LOG_PATH
set log file to log messages to disk, if not
specified, the logs will only be output to console
(default: None)

-m {master,collect,workers}, --mpi-log {master,collect,workers}

Set the manner of logging when running with MPI.
'master' logs only on main process, 'collect'
broadcasts logs from workers to master and 'workers'
means each process will output its own log (default:
master)

-i INPUT, --input INPUT
The original frozen model, which will be compressed by
the code (default: frozen_model.pb)

-o OUTPUT, --output OUTPUT
The compressed model (default:
frozen_model_compressed.pb)

-s STEP, --step STEP Model compression uses fifth-order polynomials to
interpolate the embedding-net. It introduces two
tables with different step size to store the
parameters of the polynomials. The first table covers
the range of the training data, while the second table
is an extrapolation of the training data. The domain
of each table is uniformly divided by a given step
size. And the step(parameter) denotes the step size of
the first table and the second table will use 10 *
step as it's step size to save the memory. Usually the
value ranges from 0.1 to 0.001. Smaller step means
higher accuracy and bigger model size (default: 0.01)

—-e EXTRAPOLATE, --extrapolate EXTRAPOLATE
The domain range of the first table is automatically
detected by the code: [d_low, d_up]. While the second
table ranges from the first table's upper
boundary(d_up) to the extrapolate(parameter) * d_up:
[d_up, extrapolate * d_up] (default: 5)

-f FREQUENCY, --frequency FREQUENCY
The frequency of tabulation overflow check(Whether the
input environment matrix overflow the first or second
table range). By default do not check the overflow
(default: -1)

—-c CHECKPOINT_FOLDER, --checkpoint-folder CHECKPOINT_FOLDER
path to checkpoint folder (default: .)

-t TRAINING_SCRIPT, --training-script TRAINING_SCRIPT
The training script of the input frozen model
(default: None)

Parameter explanation

Model compression, which includes tabulating the embedding net. The table is composed of fifth-order poly-
nomial coefficients and is assembled from two sub-tables. For model descriptor with se_e2_a type, the first
sub-table takes the stride(parameter) as its uniform stride, while the second sub-table takes 10 * stride as its
uniform stride; For model descriptor with se_e3 type, the first sub-table takes 10 * stride as it’s uniform stride,
while the second sub-table takes 100 * stride as it’s uniform stride. The range of the first table is automati-
cally detected by DeePMD-kit, while the second table ranges from the first table’s upper boundary(upper) to

96 Chapter 6. Freeze and Compress

DeePMD-kit

the extrapolate(parameter) * upper. Finally, we added a check frequency parameter. It indicates how often
the program checks for overflow(if the input environment matrix overflows the first or second table range)
during the MD inference.

Justification of model compression

Model compression, with little loss of accuracy, can greatly speed up MD inference time. According to differ-
ent simulation systems and training parameters, the speedup can reach more than 10 times at both CPU and
GPU devices. At the same time, model compression can greatly change memory usage, reducing as much as
20 times under the same hardware conditions.

Acceptable original model version

The model compression interface requires the version of DeePMD-kit used in the original model gen-
eration should be 2.0.0-alpha.0 or above. If one has a frozen 1.2 or 1.3 model, one can upgrade it
through the dp convert-from interface. (eg: dp convert-from 1.2/1.3 -i old_frozen_model.pb -o
new_frozen_model.pb)

Acceptable descriptor type

Descriptors with se_e2_a, se_e3, and se_e2_r types are supported by the model compression feature. Hybrid
mixed with the above descriptors is also supported.

Available activation functions for descriptor:
¢ tanh
e gelu
e relu
e relu6
e softplus

e sigmoid

6.2. Compress a model 97

DeePMD-kit

98

Chapter 6. Freeze and Compress

CHAPTER
SEVEN

TEST

7.1 Test a model

The frozen model can be used in many ways. The most straightforward test can be performed using dp test.
A typical usage of dp test is

[dp test -m graph.pb -s /path/to/system -n 30 }

where -m gives the tested model, -s the path to the tested system and -n the number of tested frames. Several
other command line options can be passed to dp test, which can be checked with

[$ dp test --help }

An explanation will be provided

usage: dp test [-h] [-m MODEL] [-s SYSTEM] [-S SET_PREFIX] [-n NUMB_TEST]
[-r RAND_SEED] [--shuffle-test] [-d DETAIL_FILE]

optional arguments:
-h, --help show this help message and exit
-m MODEL, --model MODEL
Frozen model file to import
-s SYSTEM, --system SYSTEM
The system dir
-S SET_PREFIX, --set-prefix SET_PREFIX
The set prefix
-n NUMB_TEST, --numb-test NUMB_TEST
The number of data for test
-r RAND_SEED, --rand-seed RAND_SEED
The random seed
--shuffle-test Shuffle test data
-d DETAIL_FILE, --detail-file DETAIL_FILE
The prefix to files where details of energy, force and virial accuracy/
—accuracy per atom will be written
-a, ——atomic Test the accuracy of atomic label, i.e. energy / tensor (dipole, polar)

99

DeePMD-kit

7.2 Calculate Model Deviation

One can also use a subcommand to calculate the deviation of predicted forces or virials for a bunch of models
in the following way:

[dp model-devi -m graph.000.pb graph.001.pb graph.002.pb graph.003.pb -s ./data -o model_devi.out }

where -m specifies graph files to be calculated, -s gives the data to be evaluated, -o the file to which model
deviation results is dumped. Here is more information on this sub-command:

usage: dp model-devi [-h] [-v {DEBUG,3,INFO0,2,WARNING,1,ERROR,O0}]
[-1 LOG_PATH] [-m MODELS [MODELS ...l] [-s SYSTEM]
[-S SET_PREFIX] [-o OUTPUT] [-f FREQUENCY] [-i ITEMS]

optional arguments:

-h, --help show this help message and exit

-v {DEBUG, 3,INFO,2,WARNING,1,ERROR,0}, --log-level {DEBUG,3,INFO,2,WARNING,1,ERROR,O}
set verbosity level by string or number, O=ERROR,
1=WARNING, 2=INFO and 3=DEBUG (default: INFO)

-1 LOG_PATH, --log-path LOG_PATH
set log file to log messages to disk, if not
specified, the logs will only be output to console
(default: None)

-m MODELS [MODELS ...], --models MODELS [MODELS ...]
Frozen models file to import (default:
['graph.000.pb', 'graph.001.pb', 'graph.002.pb',
'graph.003.pb'])

-s SYSTEM, --system SYSTEM
The system directory, not support recursive detection.
(default: .)

-S SET_PREFIX, --set-prefix SET_PREFIX
The set prefix (default: set)

-o OUTPUT, --output OUTPUT
The output file for results of model deviation
(default: model_devi.out)

-f FREQUENCY, --frequency FREQUENCY
The trajectory frequency of the system (default: 1)

For more details concerning the definition of model deviation and its application, please refer to Yuzhi Zhang,
Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang, and Weinan E, DP-GEN: A concurrent
learning platform for the generation of reliable deep learning based potential energy models, Computer
Physics Communications, 2020, 253, 107206.

100 Chapter 7. Test

https://doi.org/10.1016/j.cpc.2020.107206
https://doi.org/10.1016/j.cpc.2020.107206
https://doi.org/10.1016/j.cpc.2020.107206
https://doi.org/10.1016/j.cpc.2020.107206

CHAPTER

EIGHT

INFERENCE

Note that the model for inference is required to be compatible with the DeePMD-kit package. See Model
compatibility for details.

8.1 Python interface

One may use the python interface of DeePMD-kit for model inference, an example is given as follows

from deepmd.infer import DeepPot
import numpy as np

dp = DeepPot("graph.pb")

coord = mnp.array([[1, 0, 0], [0, O, 1.5], [1, O, 3]1).reshape([1, -11)
cell = np.diag(10 * np.ones(3)) .reshape([1, -1])

atype = [1, 0, 1]

e, £, v = dp.eval(coord, cell, atype)

where e, £ and v are predicted energy, force and virial of the system, respectively.

Furthermore, one can use the python interface to calculate model deviation.

from deepmd.infer import calc_model_devi
from deepmd.infer import DeepPot as DP
import numpy as np

coord = mp.array([[1, O, 0], [0, O, 1.5], [1, O, 31]).reshape([1, -1])
cell = np.diag(10 * np.ones(3)).reshape([1, -1])

atype = [1, 0, 1]

graphs = [DP("graph.000.pb"), DP("graph.001.pb")]

model_devi = calc_model_devi(coord, cell, atype, graphs)

Note that if the model inference or model deviation is performed cyclically, one should avoid calling the
same model multiple times. Otherwise, tensorFlow will never release the memory and this may lead to an
out-of-memory (OOM) error.

101

../troubleshooting/model-compatability.html
../troubleshooting/model-compatability.html

DeePMD-kit

8.2 C/C++ interface

8.2.1 C++ interface

The C++ interface of DeePMD-Kkit is also available for the model interface, which is considered faster than
the Python interface. An example infer_water.cpp is given below:

-

#include "deepmd/DeepPot.h"

int main(){

deepmd: :DeepPot dp ("graph.pb");

std::vector<double > coord = {1., 0., 0., 0., 0., 1.5, 1. ,0. ,3.};
std::vector<double > cell = {10., 0., 0., 0., 10., 0., 0., 0., 10.};
std: :vector<int > atype = {1, 0, 1};

double e;

std: :vector<double > f, v;

dp.compute (e, f, v, coord, atype, cell);

J

where e, f and v are predicted energy, force and virial of the system, respectively. See deepmd: : DeepPot for
details.

You can compile infer_water. cpp using gcc:

—~as—needed -ldeepmd_cc -lstdc++ -ltensorflow_cc -W1,-rpath=$deepmd_root/lib -W1,-rpath=

—$tensorflow_root/lib -o infer_water

gcc infer_water.cpp -L $deepmd_root/lib -L $tensorflow_root/lib -I $deepmd_root/include -W1l,--no-

and then run the program:

E

./infer_water

8.2.2 C interface

An example infer_water.c is given below:

Although C is harder to write, the C library will not be affected by different versions of C++ compilers.

-

#include <stdio.h>
#include <stdlib.h>
#include "deepmd/c_api.h"

int main(){
const char* model = "graph.pb";
double coord[] = {1., 0., 0., 0., 0., 1.5, 1. ,0. ,3.};
double cell[] = {10., 0., 0., 0., 10., 0., 0., 0., 10.};
int atypel]l = {1, 0, 1};
// init C pointers with given memory
double* e = malloc(sizeof (*xe));
doublex f = malloc(sizeof (*f) * 9); // natoms * 3
double* v = malloc(sizeof (*v) * 9);
doublex ae = malloc(sizeof (*xae) * 9); // natoms
double* av = malloc(sizeof (xav) * 27); // natoms * 9
// DP model
DP_DeepPot* dp = DP_NewDeepPot (model) ;

(continues on next page)

102

Chapter 8.

Inference

DeePMD-kit

DP_DeepPotCompute (dp, 3, coord, atype, cell, e, f, v, ae, av);

// print results
printf ("energy: %f\n", *e);
for (int ii = 0; ii < 9; ++ii)

printf ("forcel[%d]l: %f\n", ii, £[iil);

for (int ii = 0; ii < 9; ++ii)

printf("force[/d]l: %f\n", ii, v[iil);

// free memory
free(e);
free(f);
free(v);
free(ae);
free(av);
free(dp);

(continued from previous page)

where e, £ and v are predicted energy, force and virial of the system, respectively. ae and av are atomic

energy and atomic virials, respectively. See DP_DeepPotCompute () for details.

You can compile infer_water.c using gcc:

gcc infer_water.c -L $deepmd_root/lib -L $tensorflow_root/lib -I $deepmd_root/include -Wl,--no-as-
—needed -ldeepmd_c -W1l,-rpath=$deepmd_root/lib -W1l,-rpath=$tensorflow_root/lib -o infer_water

and then run the program:

[./infer_water

8.2.3 Header-only C++ library interface (recommended)

The header-only C++ library is built based on the C library. Thus, it has the same ABI compatibility as the
C library but provides a powerful C++ interface. To use it, include deepmd/deepmd . hpp.

#include "deepmd/deepmd.hpp"

int main(){
deepmd: :hpp: :DeepPot dp ("graph.pb");

std: :vector<double > coord = {1., 0., 0., 0., 0., 1.5, 1.

MO

std::vector<double > cell = {10., 0., 0., 0., 10., 0., 0., 0., 10.};

std: :vector<int > atype = {1, 0, 1};
double e;
std: :vector<double > f, v;

dp.compute (e, f, v, coord, atype, cell);

Note that the feature of the header-only C++ library is still limited compared to the original C++ library.

See deepmd: :hpp: :DeepPot for details.

You can compile infer_water_hpp. cpp using gcc:

gcc infer_water_hpp.hpp -L $deepmd_root/lib -L $tensorflow_root/lib -I $deepmd_root/include -Wl,--
—no-as-needed -ldeepmd_c -W1,-rpath=$deepmd_root/lib -W1l,-rpath=$tensorflow_root/lib -o infer_

—water_hpp

and then run the program:

8.2. C/C++ interface

103

DeePMD-kit

[./infer_water_hpp }

In some cases, one may want to pass the custom neighbor list instead of the native neighbor list. The above
code can be revised as follows:

// neighbor list
std: :vector<std::vector<int >> nlist_vec = {
{1, 2},
{0, 2},
{0, 1}
Irg
std::vector<int> ilist(3), numneigh(3);
std: :vector<int*> firstneigh(3);
InputNlist nlist(3, &ilist[0], &numneigh[0], &firstneigh[0]);
convert_nlist(nlist, nlist_vec);
dp.compute (e, f, v, coord, atype, cell, 0, nlist, 0);

Here, nlist_vec means the neighbors of atom 0 are atom 1 and atom 2, the neighbors of atom 1 are atom 0
and atom 2, and the neighbors of atom 2 are atom 0 and atom 1.

104 Chapter 8. Inference

CHAPTER
NINE

COMMAND LINE INTERFACE

DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dy-
namics

usage: dp [-h] [--version]
{config,transfer,train,freeze,test,compress,doc-train-input,model-devi,convert-from,
—neighbor-stat,train-nvamd}

9.1 Named Arguments

--version show program’s version number and exit

9.2 Valid subcommands

command Possible choices: config, transfer, train, freeze, test, compress, doc-train-
input, model-devi, convert-from, neighbor-stat, train-nvnmd

9.3 Sub-commands

9.3.1 config

fast configuration of parameter file for smooth model

dp config [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-o OUTPUT]

105

DeePMD-kit

Named Arguments

-v, --log-level

-1, --log-path

-0, --output

9.3.2 transfer

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

set log file to log messages to disk, if not specified, the logs will only be
output to console

the output json file

Default: “input.json”

pass parameters to another model

dp transfer [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-r RAW_MODEL] [-0 OLD_MODEL] [-o OUTPUT]

Named Arguments

-v, —-log-level

-1, --log-path

-1, --raw-model

-0, --old-model

-0, -—output

9.3.3 train

train a model

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

set log file to log messages to disk, if not specified, the logs will only be
output to console

the model receiving parameters
Default: “raw_frozen_model.pb”
the model providing parameters
Default: “old frozen model.pb”
the model after passing parameters

Default: “frozen_model.pb”

dp train [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-m {master,collect,workers}]
[-i INIT_MODEL | -r RESTART | —-f INIT_FRZ_MODEL | -t FINETUNE]
[-o OUTPUT] [--skip-neighbor-stat]

INPUT

106

Chapter 9. Command line interface

DeePMD-kit

Positional Arguments

INPUT

Named Arguments

-v, --log-level

-1, --log-path

-m, --mpi-log

-i, --init-model

-1, --restart

-f, —-init-frz-model
-t, --finetune

-0, --output

the input parameter file in json or yaml format

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

set log file to log messages to disk, if not specified, the logs will only be
output to console

Possible choices: master, collect, workers

Set the manner of logging when running with MPI. ‘master’ logs only on
main process, ‘collect’ broadcasts logs from workers to master and ‘work-
ers’ means each process will output its own log

Default: “master”

Initialize the model by the provided checkpoint.
Restart the training from the provided checkpoint.
Initialize the training from the frozen model.
Finetune the frozen pretrained model.

The output file of the parameters used in training.

Default: “out.json”

--skip-neighbor-stat Skip calculating neighbor statistics. Sel checking, automatic sel, and

examples:

model compression will be disabled.

Default: False

dp train input.json dp train input.json —restart model.ckpt dp train input.json —init-model model.ckpt

9.3.4 freeze

freeze the model

dp freeze [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-c CHECKPOINT_FOLDER] [-o OUTPUT] [-n NODE_NAMES] [-w NVNMD_WEIGHT]
[--united-modell

9.3. Sub-commands

107

DeePMD-kit

Named Arguments

-v, --log-level

-1, --log-path

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

set log file to log messages to disk, if not specified, the logs will only be
output to console

-¢, --checkpoint-folder path to checkpoint folder

-0, --output

-n, --node-names

Default: «.”
name of graph, will output to the checkpoint folder
Default: “frozen_model.pb”

the frozen nodes, if not set, determined from the model type

-w, -nvnmd-weight the name of weight file (.npy), if set, save the model’s weight into the file

--united-model

examples:

When in multi-task mode, freeze all nodes into one united model

Default: False

dp freeze dp freeze -o graph.pb

9.3.5 test

test the model

dp test [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH] [-m MODEL]
[-s SYSTEM | -f DATAFILE] [-S SET_PREFIX] [-n NUMB_TEST]
[-r RAND_SEED] [--shuffle-test] [-d DETAIL_FILE] [-a]

Named Arguments

-v, -—-log-level

-1, --log-path
-m, --model
-8, --system
-f, --datafile

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

set log file to log messages to disk, if not specified, the logs will only be
output to console

Frozen model file to import

Default: “frozen_model.pb”

The system dir. Recursively detect systems in this directory
Default: «.”

The path to file of test list.

108

Chapter 9. Command line interface

DeePMD-kit

-S, —-set-prefix

-n, --numb-test

-1, --rand-seed

--shuflle-test

-d, --detail-file

-a, --atomic

examples:

The set prefix

Default: “set”

The number of data for test
Default: 100

The random seed

Shuffle test data

Default: False

The prefix to files where details of energy, force and virial accu-
racy/accuracy per atom will be written

Test the accuracy of atomic label, i.e. energy / tensor (dipole, polar)

Default: False

dp test -m graph.pb -s /path/to/system -n 30

9.3.6 compress

compress a model

dp compress [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-m {master,collect,workers}] [-i INPUT] [-o OUTPUT] [-s STEP]
[-e EXTRAPOLATE] [-f FREQUENCY] [-c CHECKPOINT_FOLDER]
[-t TRAINING_SCRIPT]

Named Arguments

-v, --log-level

-1, --log-path

-m, --mpi-log

-1, —-input

-0, --output

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

set log file to log messages to disk, if not specified, the logs will only be
output to console

Possible choices: master, collect, workers

Set the manner of logging when running with MPI. ‘master’ logs only on
main process, ‘collect’ broadcasts logs from workers to master and ‘work-
ers’ means each process will output its own log

Default: “master”

The original frozen model, which will be compressed by the code
Default: “frozen_model.pb”

The compressed model

Default: “frozen_model compressed.pb”

9.3. Sub-commands

109

DeePMD-kit

-s, —-step Model compression uses fifth-order polynomials to interpolate the
embedding-net. It introduces two tables with different step size to store
the parameters of the polynomials. The first table covers the range of the
training data, while the second table is an extrapolation of the training
data. The domain of each table is uniformly divided by a given step size.
And the step(parameter) denotes the step size of the first table and the sec-
ond table will use 10 * step as it’s step size to save the memory. Usually the
value ranges from 0.1 to 0.001. Smaller step means higher accuracy and
bigger model size

Default: 0.01

-e, ——extrapolate The domain range of the first table is automatically detected by the code:
[d_low, d_up]. While the second table ranges from the first table’s upper
boundary(d_up) to the extrapolate(parameter) * d_up: [d_up, extrapolate
*d up]

Default: 5

-f, --frequency The frequency of tabulation overflow check(Whether the input environ-
ment matrix overflow the first or second table range). By default do not
check the overflow

Default: -1
-¢, --checkpoint-folder path to checkpoint folder
Default: “model-compression”
-t, --training-script The training script of the input frozen model

examples:
dp compress dp compress -i graph.pb -o compressed.pb

9.3.7 doc-train-input

print the documentation (in rst format) of input training parameters.

dp doc-train-input [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[--out-type OUT_TYPE]

Named Arguments

-v, --log-level Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

-1, --log-path set log file to log messages to disk, if not specified, the logs will only be
output to console

--out-type The output type
Default: “rst”

110 Chapter 9. Command line interface

DeePMD-kit

9.3.8 model-devi

calculate model deviation

dp model-devi [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-m MODELS [MODELS ...]] [-s SYSTEM] [-S SET_PREFIX] [-o OUTPUT]
[-f FREQUENCY]

Named Arguments

-v, --log-level Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

-1, --log-path set log file to log messages to disk, if not specified, the logs will only be
output to console

-m, --models Frozen models file to import

Default: [‘graph.000.pb’, ‘graph.001.pb’, ‘graph.002.pb’, ‘graph.003.pb’]

-s, --system The system directory. Recursively detect systems in this directory.
Default: «.”
-S, --set-prefix The set prefix

Default: “set”

-0, --output The output file for results of model deviation
Default: “model_devi.out”

-f, --frequency The trajectory frequency of the system
Default: 1

examples:

dp model-devi -m graph.000.pb graph.001.pb graph.002.pb graph.003.pb -s ./data -0 model_devi.out

9.3.9 convert-from

convert lower model version to supported version

dp convert-from [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-i INPUT_MODEL] [-o OUTPUT_MODEL]
[{auto,0.12,1.0,1.1,1.2,1.3,2.0,pbtxt}]

9.3. Sub-commands

111

DeePMD-kit

Positional Arguments

FROM

Named Arguments

-v, --log-level

-1, --log-path

-i, —-input-model

-0, —-output-model

examples:
dp convert-from -i graph.pb -o graph_new.pb dp convert-from auto -i graph.pb -o graph_new.pb dp
convert-from 1.0 -i graph.pb -o graph_new.pb

9.3.10 neighbor-stat

Possible choices: auto, 0.12, 1.0, 1.1, 1.2, 1.3, 2.0, pbtxt
The original model compatibility

Default: “auto”

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

set log file to log messages to disk, if not specified, the logs will only be
output to console

the input model
Default: “frozen_model.pb”
the output model

Default: “convert_out.pb”

Calculate neighbor statistics

dp neighbor-stat [-h] [-v {DEBUG,3,INFO,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-s SYSTEM] -r RCUT -t TYPE_MAP [TYPE_MAP ...] [--one-typel

Named Arguments

-v, -—-log-level

-1, --log-path
-8, --system
-1, --rcut

-t, --type-map

Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

set log file to log messages to disk, if not specified, the logs will only be
output to console

The system dir. Recursively detect systems in this directory
Default: «.”
cutoff radius

type map

112

Chapter 9. Command line interface

DeePMD-kit

--one-type treat all types as a single type. Used with se_atten descriptor.
Default: False

examples:
dp neighbor-stat -s data -r 6.0 -t O H

9.3.11 train-nvnhmd

train nvnmd model

dp train-nvnmd [-h] [-v {DEBUG,3,INFO0,2,WARNING,1,ERROR,0}] [-1 LOG_PATH]
[-r RESTART] [-s {s1,s2}]
INPUT

Positional Arguments

INPUT the input parameter file in json format

Named Arguments

-v, --log-level Possible choices: DEBUG, 3, INFO, 2, WARNING, 1, ERROR, 0

set verbosity level by string or number, 0=ERROR, 1=WARNING,
2=INFO and 3=DEBUG

Default: “INFO”

-1, --log-path set log file to log messages to disk, if not specified, the logs will only be
output to console

-r, --restart Restart the training from the provided checkpoint.

-8, --step Possible choices: s1, s2
steps to train model of NVNMD: sl (train CNN), s2 (train QNN)
Default: “s1”

9.3. Sub-commands 113

DeePMD-kit

114 Chapter 9. Command line interface

CHAPTER

TEN

INTEGRATE WITH THIRD-PARTY PACKAGES

Note that the model for inference is required to be compatible with the DeePMD-kit package. See Model
compatibility for details.

10.1 Use deep potential with ASE

Deep potential can be set up as a calculator with ASE to obtain potential energies and forces.

from ase import Atoms
from deepmd.calculator import DP

water = Atoms(
"H20",
positions=[(0.7601, 1.9270, 1), (1.9575, 1, 1), (1.0, 1.0, 1.0)],
cell=[100, 100, 100],
calculator=DP(model="frozen_model.pb"),
)
print(water.get_potential_energy())
print (water.get_forces())

Optimization is also available:

from ase.optimize import BFGS

dyn = BFGS(water)
dyn.run(fmax=1e-6)
print(water.get_positions())

10.2 Run MD with LAMMPS

Running an MD simulation with LAMMPS is simpler. In the LAMMPS input file, one needs to specify the
pair style as follows

pair_style deepmd graph.pb
pair_coeff * x 0 H

where graph.pb is the file name of the frozen model. pair_coeff maps atom names (0 H) with LAMMPS
atom types (integers from 1 to Ntypes, i.e. 1 2).

115

../troubleshooting/model-compatability.html
../troubleshooting/model-compatability.html

DeePMD-kit

10.3 LAMMPS commands

10.3.1 Enable DeePMD-kit plugin (plugin mode)

If you are using the plugin mode, enable DeePMD-kit package in LAMMPS with plugin command:

[plugin load libdeepmd_lmp.so }

After LAMMPS version patch_24Mar2022, another way to load plugins is to set the environmental variable
LAMMPS_PLUGIN_ PATH:

[LAMMPS_PLUGIN_PATH=$deepmd_root/lib/deepmd_lmp]

where $deepmd_root is the directory to install C++ interface.

The built-in mode doesn’t need this step.

10.3.2 pair_style deepmd

The DeePMD-kit package provides the pair_style deepmd

[pair_style deepmd models ... keyword value ... }

o deepmd = style of this pair_style

¢ models = frozen model(s) to compute the interaction. If multiple models are provided, then only the
first model serves to provide energy and force prediction for each timestep of molecular dynamics, and
the model deviation will be computed among all models every out_freq timesteps.

* keyword = out_file or out_freq or fparam or fparam_from_compute or atomic or relative or relative_v
or aparam or ttm

Examples

pair_style deepmd graph.pb

pair_style deepmd graph.pb fparam 1.2

pair_style deepmd graph_O.pb graph_1.pb graph_2.pb out_file md.out out_freq 10 atomic relative 1.0
pair_coeff * *x 0 H

pair_style deepmd cp.pb fparam_from_compute TEMP
compute TEMP all temp

Description

Evaluate the interaction of the system by using Deep Potential or Deep Potential Smooth Edition. It is noticed
that deep potential is not a “pairwise” interaction, but a multi-body interaction.

This pair style takes the deep potential defined in a model file that usually has the .pb extension. The model
can be trained and frozen by package DeePMD-kit.

The model deviation evalulates the consistency of the force predictions from multiple models. By default,
only the maximal, minimal and average model deviations are output. If the key atomic is set, then the model
deviation of force prediction of each atom will be output.

116 Chapter 10. Integrate with third-party packages

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.143001
https://dl.acm.org/doi/10.5555/3327345.3327356
https://github.com/deepmodeling/deepmd-kit

DeePMD-kit

By default, the model deviation is output in absolute value. If the keyword relative is set, then the relative
model deviation of the force will be output, including values output by the keyword atomic. The relative
model deviation of the force on atom 7 is defined by

= |l)ﬁ
o fil

Ey

where Dy, is the absolute model deviation of the force on atom ¢, f; is the norm of the force and ! is provided as
the parameter of the keyword relative. If the keyword relative_v is set, then the relative model deviation
of the virial will be output instead of the absolute value, with the same definition of that of the force:

_ |Dw
IR

Vi

If the keyword fparam is set, the given frame parameter(s) will be fed to the model. If the keyword
fparam_from_compute is set, the global parameter(s) from compute command (e.g., temperature from com-
pute temp command) will be fed to the model as the frame parameter(s). If the keyword aparam is set, the
given atomic parameter(s) will be fed to the model, where each atom is assumed to have the same atomic
parameter(s). If the keyword ttm is set, electronic temperatures from fix ttm command will be fed to the
model as the atomic parameters.

Only a single pair_coeff command is used with the deepmd style which specifies atom names. These are
mapped to LAMMPS atom types (integers from 1 to Ntypes) by specifying Ntypes additional arguments
after * xin the pair_coeff command. If atom names are not set in the pair_coeff command, the training
parameter type map will be used by default. If the training parameter type map is not set, atom names
in the pair_coeff command cannot be set. In this case, atom type indexes in type. raw (integers from 0 to
Ntypes-1) will map to LAMMPS atom types.

Restrictions

¢ The deepmd pair style is provided in the USER-DEEPMD package, which is compiled from the DeePMD-
kit, visit the DeePMD-kit website for more information.

10.3.3 Compute tensorial properties

The DeePMD-kit package provides the compute deeptensor/atom for computing atomic tensorial properties.

[compute ID group-ID deeptensor/atom model_file

¢ ID: user-assigned name of the computation

e group-ID: ID of the group of atoms to compute
o deeptensor/atom: the style of this compute

e model file: the name of the binary model file.

At this time, the training parameter type map will be mapped to LAMMPS atom types.

10.3. LAMMPS commands 117

https://docs.lammps.org/compute_temp.html
https://docs.lammps.org/compute_temp.html
https://docs.lammps.org/fix_ttm.html
https://github.com/deepmodeling/deepmd-kit

DeePMD-kit

Examples

[compute dipole all deeptensor/atom dipole.pb

The result of the compute can be dumped to trajectory file by

[dump 1 all custom 100 water.dump id type c_dipole[1] c_dipole[2] c_dipolel[3]

Restrictions

¢ The deeptensor/atom compute is provided in the USER-DEEPMD package, which is compiled from
the DeePMD-kit, visit the DeePMD-kit website for more information.

10.3.4 Long-range interaction

The reciprocal space part of the long-range interaction can be calculated by LAMMPS command
kspace_style. To use it with DeePMD-kit, one writes

pair_style deepmd graph.pb
pair_coeff * *

kspace_style pppm 1.0e-5
kspace_modify gewald 0.45

Please notice that the DeePMD does nothing to the direct space part of the electrostatic interaction, because
this part is assumed to be fitted in the DeePMD model (the direct space cut-off is thus the cut-off of the
DeePMD model). The splitting parameter gewald is modified by the kspace_modify command.

10.3.5 Use of the centroid/stress/atom to get the full 3x3 “atomic-virial”

The DeePMD-kit allows also the computation of per-atom stress tensor defined as:
denm,

dvatom =Y (t, — 1) 5"

vatom 2 (rp, — ') ar.

Where r,, is the atomic position of nth atom, v,, velocity of the atom and % the derivative of the atomic
energy.

In LAMMPS one can get the per-atom stress using the command centroid/stress/atom:

[compute ID group-ID centroid/stress/atom NULL virial

see LAMMPS doc page for more details on the meaning of the keywords.

118 Chapter 10. Integrate with third-party packages

https://github.com/deepmodeling/deepmd-kit
https://github.com/deepmodeling/deepmd-kit
https://docs.lammps.org/compute_stress_atom.html#thompson2

DeePMD-kit

Examples

In order of computing the 9-component per-atom stress

[compute stress all centroid/stress/atom NULL virial

Thus c_stress is an array with 9 components in the order xx,yy,zz,xy,xz,yz,yxX,2zX, Zy.

If you use this feature please cite D. Tisi, L. Zhang, R. Bertossa, H. Wang, R. Car, S. Baroni - arXiv preprint
arXiv:2108.10850, 2021

10.3.6 Computation of heat flux

Using a per-atom stress tensor one can, for example, compute the heat flux defined as:
J = Zenvn + Z(rm — rn)de—mvn

to compute the heat flux with LAMMPS:

compute ke ID all ke/atom

compute pe_ID all pe/atom

compute stress_ID group-ID centroid/stress/atom NULL virial
compute flux_ ID all heat/flux ke_ID pe_ID stress_ID

Examples

compute ke all ke/atom

compute pe all pe/atom

compute stress all centroid/stress/atom NULL virial
compute flux all heat/flux ke pe stress

c_flux is a global vector of length 6. The first three components are the x, y and z components of the full
heat flux vector. The others are the components of the so-called convective portion, see LAMMPS doc page
for more detailes.

If you use these features please cite D. Tisi, L. Zhang, R. Bertossa, H. Wang, R. Car, S. Baroni - arXiv preprint
arXiv:2108.10850, 2021

10.4 Run path-integral MD with i-Pl

The i-PI works in a client-server model. The i-PI provides the server for integrating the replica positions of
atoms, while the DeePMD-kit provides a client named dp_ipi (or dp_ipi_low for low precision) that com-
putes the interactions (including energy, forces and virials). The server and client communicate via the Unix
domain socket or the Internet socket. Installation instructions for i-PI can be found here. The client can be
started by

i-pi input.xml &
dp_ipi water.json

10.4. Run path-integral MD with i-PI 119

https://arxiv.org/abs/2108.10850
https://arxiv.org/abs/2108.10850
https://docs.lammps.org/compute_heat_flux.html
https://arxiv.org/abs/2108.10850
https://arxiv.org/abs/2108.10850

DeePMD-kit

It is noted that multiple instances of the client allow for computing, in parallel, the interactions of multiple
replicas of the path-integral MD.

water. json is the parameter file for the client dp_ipi, and an example is provided:

{
"verbose": false,
"use_unix": true,
"port": 31415,
"host": "localhost",
"graph_file": "graph.pb",
"coord_file": "conf .xyz",
"atom_type" : {
"ow": 0,
"HW1": 1,
"HW2" : 1
}
}

The option use_unix is set to true to activate the Unix domain socket, otherwise, the Internet socket is used.

The option port should be the same as that in input.xml:

[<port>31415</port>

The option graph_file provides the file name of the frozen model.

The dp_ipi gets the atom names from an XY7Z file provided by coord_file (meanwhile ignores all coordi-
nates in it) and translates the names to atom types by rules provided by atom_type.

10.5 Running MD with GROMACS

10.5.1 DP/MM Simulation

This part gives a simple tutorial on how to run a DP/MM simulation for methane in water, which means using
DP for methane and TIP3P for water. All relevant files can be found in examples/methane.

Topology Preparation

Similar to QM/MM simulation, the internal interactions (including bond, angle, dihedrals, LJ, Columb) of the
region described by a neural network potential (NNP) have to be turned off. In GROMACS, bonded interac-
tions can be turned off by modifying [bonds 1, [angles], [dihedrals] and [pairs] sections. And
LJ and Columb interactions must be turned off by [exclusions] section.

For example, if one wants to simulate ethane in water, using DeepPotential for methane and TTP3P for water,
the topology of methane should be like the following (as presented in examples/methane/methane.itp):

[atomtypes]

;name btype mass charge ptype sigma epsilon
c3 c3 0.0 0.0 A 0.339771 0.451035
hc hc 0.0 0.0 A 0.260018 0.087027

[moleculetype]
;name nrexcl

(continues on next page)

120 Chapter 10. Integrate with third-party packages

https://en.wikipedia.org/wiki/XYZ_file_format

DeePMD-kit

(continued from previous page)

methane 3

[atoms]

; nr type resnr residue atom cgnr charge mass
1 c3 1 MOL C1 1 -0.1068 12.010
2 hc 1 MOL H1 2 0.0267 1.008
3 hc 1 MOL H2 3 0.0267 1.008
4 hc 1 MOL H3 4 0.0267 1.008
5 hc 1 MOL H4 5 0.0267 1.008

[bonds]

; 1 j func bO kb

(e S S
o W N
o o o1 O

[exclusions]

; ai ajl aj2 aj3 aj4
1 2 3 4 5
2 1 g 4 5
3 1 2 4 5
4 1 2 3 5
L 5 1 2 3 4 J

For comparison, the original topology file generated by acpype will be:

s Y

; methane GMX.itp created by acpype (v: 2021-02-05T22:15:50CET) on Wed Sep 8 01:21:53 2021

[atomtypes]

;name bond_type mass charge ptype sigma epsilon Amb
c3 c3 0.00000 0.00000 A 3.39771e-01 4.51035e-01 ; 1.91 0.1078
hc hc 0.00000 0.00000 A 2.60018e-01 8.70272e-02 ; 1.46 0.0208

[moleculetype]

;name nrexcl
methane 3
[atoms]
g nr type resi res atom cgnr charge mass ; qtot bond_type
1 c3 1 MOL C1 1 -0.106800 12.01000 ; qtot -0.107
2 hc 1 MOL H1 2 0.026700 1.00800 ; gtot -0.080
3 hc 1 MOL H2 3 0.026700 1.00800 ; gtot -0.053
4 hc 1 MOL H3 4 0.026700 1.00800 ; gtot -0.027
5 hc 1 MOL H4 5 0.026700 1.00800 ; gqtot 0.000
[bonds]
g ai aj funct «r k
1 2 1 1.0970e-01 3.1455e+05 ; Cl1 - H1
1 3 1 1.0970e-01 3.1455e+05 ; C1 - H2
1 4 1 1.0970e-01 3.1455e+05 ; Cl - H3
1 5 1 1.0970e-01 3.1455e+05 ; Cl - H4
[angles 1]
g ai aj ak funct theta cth
2 1 3 1 1.0758e+02 3.2635e+02 ; H1 - C1 - H2

(continues on next page)

10.5. Running MD with GROMACS 121

DeePMD-kit

(continued from previous page)

2 1 4 1 1.0758e+02 3.2635e+02 ; H1 - C1 = H3
2 1 5 1 1.0758e+02 3.2635e+02 ; H1 - C1 - H4
3 1 4 1 1.0758e+02 3.2635e+02 ; H2 - C1 - H3
3 1 5 1 1.0758e+02 3.2635e+02 ; H2 - C1 - H4
4 1 5 1 1.0758e+02 3.2635e+02 ; H3 - C1 - H4

DeepMD Settings

Before running simulations, we need to tell GROMACS to use DeepPotential by setting the environment
variable GMX_DEEPMD_INPUT_JSON:

[export GMX_DEEPMD_INPUT_JSON=input. json]

Then, in your working directories, we have to write input . json file:

{
"graph_file": "/path/to/graph.pb",
"type_file": "type.raw",
"index_file": "index.raw",
"lambda": 1.0,
"pbc": false

}

Here is an explanation for these settings:
e graph_file: The graph file (with suffix .pb) generated by dp freeze command

» type_file : File to specify DP atom types (in space-separated format). Here, type.raw looks like

[10000]

e index_file: File containing indices of DP atoms (in space-separated format), which should be consis-
tent with the indices’ order in .gro file but starting from zero. Here, index.raw looks like

£01234 }

e lambda: Optional, default 1.0. Used in alchemical calculations.

¢ pbc: Optional, default true. If true, the GROMACS periodic condition is passed to DeepMD.

Run Simulation

Finally, you can run GROMACS using gmx mdrun as usual.

122 Chapter 10. Integrate with third-party packages

DeePMD-kit

10.5.2 All-atom DP Simulation

This part gives an example of how to simulate all atoms described by a DeepPotential with Gromacs, taking
water as an example. Instead of using [exclusions] to turn off the non-bonded energies, we can simply
do this by setting LJ parameters (i.e. epsilon and sigma) and partial charges to 0, as shown in examples/
water/gmx/water.top:

[atomtypes]

; name at.num mass charge ptype sigma epsilon
HW 1 1.008 0.0000 A 0.00000e+00 0.00000e+00
ow 8 16.00 0.0000 A 0.00000e+00 0.00000e+00

As mentioned in the above section, input.json and relevant files (index.raw, type.raw) should also
be created. Then, we can start the simulation under the NVT ensemble and plot the radial distribu-
tion function (RDF) by gmx rdf command. We can see that the RDF given by Gromacs+DP matches
perfectly with Lammps+DP, which further provides an evidence on the validity of our simulation.

NVT_500ps
A —— lammps+DP
351 I —— gromacs+DP
\ —— gromacs+TIP3P
3.0 1
2.5 A
< 2.0 1
[e]
I
o
S
1.5
N
\ ——
1.0 : - . S— __
0.5 1
0.0 A
0.0 0.2 0.4 0.6 0.8 1.0
r(nm)

However, we still recommend you run an all-atom DP simulation using LAMMPS since it is more stable and
efficient.

10.5. Running MD with GROMACS 123

DeePMD-kit

10.6 Interfaces out of DeePMD-kit

The codes of the following interfaces are not a part of the DeePMD-kit package and maintained by other
repositories. We list these interfaces here for user convenience.

10.6.1 dpdata

dpdata provides the predict method for System class:

import dpdata
dsys = dpdata.LabeledSystem('0OUTCAR')
dp_sys = dsys.predict("frozen_model_compressed.pb")

By inferring with the DP model frozen_model_compressed.pb, dpdata will generate a new labeled system
dp_sys with inferred energies, forces, and virials.

10.6.2 OpenMM plugin for DeePMD-kit

An OpenMM plugin is provided from JingHuangLab/openmm_deepmd_plugin, written by the Huang Lab at
Westlake University.

10.6.3 AMBER interface to DeePMD-kit

An AMBER interface to DeePMD-kit is written by the [York Lab from Rutgers University. It is open-source
at GitLab RutgersLBSR/AmberDPRc. Details can be found in this paper.

10.6.4 DP-GEN

DP-GEN provides a workflow to generate accurate DP models by calling DeePMD-kit’s command line inter-
face (CLI) in the local or remote server. Details can be found in this paper.

10.6.5 MLatom

Mlatom provides an interface to the DeePMD-kit within MLatom’s workflow by calling DeePMD-kit’s CLI.
Details can be found in this paper.

10.6.6 ABACUS

ABACUS can run molecular dynamics with a DP model. User is required to build ABACUS with DeePMD-kit.

124 Chapter 10. Integrate with third-party packages

https://github.com/deepmodeling/dpdata
https://github.com/openmm/openmm
https://github.com/JingHuangLab/openmm_deepmd_plugin
http://www.compbiophysics.org/
https://ambermd.org/
https://theory.rutgers.edu/
https://gitlab.com/RutgersLBSR/AmberDPRc/
https://doi.org/10.1021/acs.jctc.1c00201
https://github.com/deepmodeling/dpgen
https://doi.org/10.1016/j.cpc.2020.107206
http://mlatom.com/
https://doi.org/10.1007/s41061-021-00339-5
https://github.com/deepmodeling/abacus-develop/
https://abacus.deepmodeling.com/en/latest/advanced/install.html#build-with-deepmd-kit

CHAPTER
ELEVEN

USE NVNMD

11.1 Introduction

NVNMD stands for non-von Neumann molecular dynamics.

This is the training code we used to generate the results in our paper entitled “Accurate and Efficient Molec-
ular Dynamics based on Machine Learning and non von Neumann Architecture”, which has been accepted
by npj Computational Materials (DOT: 10.1038/s41524-022-00773-z).

Any user can follow two consecutive steps to run molecular dynamics (MD) on the proposed NVNMD com-
puter, which has been released online: (i) to train a machine learning (ML) model that can decently reproduce
the potential energy surface (PES); and (ii) to deploy the trained ML model on the proposed NVNMD com-
puter, then run MD there to obtain the atomistic trajectories.

11.2 Training

Our training procedure consists of not only continuous neural network (CNN) training but also quantized
neural network (QNN) training which uses the results of CNN as inputs. It is performed on CPU or GPU by
using the training codes we open-sourced online.

To train an ML model that can decently reproduce the PES, a training and testing data set should be prepared
first. This can be done by using either the state-of-the-art active learning tools or the outdated (i.e., less
efficient) brute-force density functional theory (DFT)-based ab-initio molecular dynamics (AIMD) sampling.

If you just want to simply test the training function, you can use the example in the $deepmd_source_dir/
examples/nvnmd directory. If you want to fully experience training and running MD functions, you can
download the complete example from the website.

Then, copy the data set to the working directory

mkdir -p $workspace
cd $workspace
mkdir -p data
cp -r $dataset data

where $dataset is the path to the data set and $workspace is the path to the working directory.

125

https://www.nature.com/articles/s41524-022-00773-z
https://github.com/LiuGroupHNU/nvnmd-example

DeePMD-kit

11.2.1 Input script

Create and go to the training directory.

mkdir train
cd train

Then copy the input script train_cnn. json and train_gnn. json to the directory train

cp -r $deepmd_source_dir/examples/nvnmd/train/train_cnn.json train_cnn.json
cp -r $deepmd_source_dir/examples/nvnmd/train/train_gnn.json train_gnn.json

The structure of the input script is as follows

{
"nvnmd" : {3},
"learning_rate" : {},
"loss" : {3},
"training": {}

}

nvnmd

The “nvnmd” section is defined as

{
"net_size":128,
"sel":[60, 60],
"rcut":6.0,
"rcut_smth":0.5
}

where items are defined as:

Item Mean Optional Value

net_size the size of nueral network 128

sel the number of neighbors integer list of lengths 1 to 4 are acceptable
rcut the cutoff radial (0, 8.0]

rcut_smth the smooth cutoff parameter (0, 8.0]

learning__rate

The “learning_rate” section is defined as

{
"type":"exp",
"start_lr": le-3,
"stop_lr": 3e-8,
"decay_steps": 5000
}

where items are defined as:

126

Chapter 11. Use NVNMD

DeePMD-kit

Item Mean Optional Value

type learning rate variant type exp

start_Ir the learning rate at the beginning of the training a positive real number
stop_Ir the desired learning rate at the end of the training a positive real number

decay_stops

the learning rate is decaying every {decay stops} training steps a positive integer

loss

The “loss” section is defined as

{
"start_pref_e": 0.02,
"limit_pref_e": 2,
"start_pref_£f": 1000,
"limit_pref _£f": 1,
"start_pref_v": O,
"limit_pref_v": O

}

where items are defined as:

ltem

start_pref e
limit_pref e
start_pref f
limit_pref f
start_pref v
limit_pref v

Mean Optional Value

the loss factor of energy at the beginning of the training zero or positive real number
the loss factor of energy at the end of the training zero or positive real number
the loss factor of force at the beginning of the training zero or positive real number
the loss factor of force at the end of the training zero or positive real number
the loss factor of virial at the beginning of the training zero or positive real number
the loss factor of virial at the end of the training zero or positive real number

training

The “training” section is defined as

{
"seed": 1,
"stop_batch": 1000000,
"numb_test": 1,
"disp_file": "lcurve.out",
"disp_freq": 1000,
"save_ckpt": "model.ckpt",
"save_freq": 10000,
"training_data":{
"systems": ["systeml_path", "system2_path", "..."],
"set_prefix": "set",
"batch_size": ["batch_size_of_systeml", "batch_size_of_system2", "..."]
}
}

where items are

defined as:

11.2. Training

127

DeePMD-kit

Item Mean Optional Value
seed the randome seed a integer
stop_batch the total training steps a positive integer
numb_test the accuracy is test by using {numb_test} sample a positive integer
disp_file the log file where the training message display a string
disp_freq display frequency a positive integer
save ckpt check point file a string

save freq save frequency a positive integer
systems a list of data directory which contains the dataset string list
set_prefix the prefix of dataset a string
batch_size a list of batch size of corresponding dataset a integer list

11.2.2 Training

Training can be invoked by

stepl: train CNN
dp train-nvnmd train_cnn.json -s sl
step2: train QNN
dp train-nvnmd train_gnn.json -s s2

After the training process, you will get two folders: nvnmd_cnn and nvnmd_qgnn. The nvnmd_cnn contains the
model after continuous neural network (CNN) training. The nvnmd_gnn contains the model after quantized
neural network (QNN) training. The binary file nvnmd_gnn/model . pb is the model file that is used to perform
NVNMD in the server [http://nvnmd.picp.vip].

You can also restart the CNN training from the checkpoint (nvomd_cnn/model . ckpt) by

[dp train-nvomd train_cnn.json -r nvnmd_cnn/model.ckpt -s sl }

11.3 Testing

The frozen model can be used in many ways. The most straightforward testing can be invoked by

mkdir test
dp test -m ./nvnmd_gnn/frozen_model.pb -s path/to/system -d ./test/detail -n 99999 -1 test/output.
—log

where the frozen model file to import is given via the -m command line flag, the path to the testing data set
is given via the -s command line flag, and the file containing details of energy, forces and virials accuracy is
given via the -d command line flag, the amount of data for testing is given via the -n command line flag.

128 Chapter 11. Use NVNMD

DeePMD-kit

11.4 Running MD

After CNN and QNN training, you can upload the ML model to our online NVNMD system and run MD there.

11.4.1 Account application

The server website of NVNMD is available at http://nvnmd.picp.vip. You can visit the URL and enter the
login interface (Figure.1).

NVNMD

User guide
Switch to Chinese
Usermname

Password

Login

To apply for an account,please email:
jie_liu@hnu.edu.cn livjie@uw.edu

To obtain an account, please send your application to the email (jie_liu@hnu.edu.cn, liujie@uw.edu). The
username and password will be sent to you by email.

11.4.2 Adding task

After successfully obtaining the account, enter the username and password in the login interface, and click
“Login” to enter the homepage (Figure.2).

NVNMD

Current user:test1 Logout
Remaining calculation time:6:22:29
Add a new task

Operation records

Calculation records Refresh
Clear calculation records

Submission time Task name Input script Calculation status Cancel calculation Calculation time Download results Delete record

The homepage displays the remaining calculation time and all calculation records not deleted. Click Add a
new task to enter the interface for adding a new task (Figure.3).

11.4. Running MD 129

DeePMD-kit

NVNMD

Current user:test! Return to home page

Remaining calculation time:6:22:29

Task name test

Upload mode @ w
Input script Browse... | inimp
Model file Browse... model.pb
Data files

Browse... | coord.Imp

Submit

e Task name: name of the task

¢ Upload mode: two modes of uploading results to online data storage, including Manual upload and
Automatic upload. Results need to be uploaded manually to online data storage with Manual upload
mode and will be uploaded automatically with Automatic upload mode.

e Input script: input file of the MD simulation.

In the input script, one needs to specify the pair style as follows

pair_style nvnmd model.pb
pair_coeff * *

o Model file: the ML model named model . pb obtained by QNN training.

 Data files: data files containing the information required for running an MD simulation (e.g., coord.1lmp
containing initial atom coordinates).

Next, you can click Submit to submit the task and then automatically return to the homepage (Figure.4).

NVNMD

Current user:test1 Logout
Remaining calculation time:6:22:29
Add a new task

Operation records

Calculation records Refresh
Clear calculation records

Submission time Task name Input script Calculation Cancel Calculation time Download Delete record
status calculation results
2022-05-17 21:31:20 test in.Imp Running Cancel

Then, click Refresh to view the latest status of all calculation tasks.

130 Chapter 11. Use NVNMD

DeePMD-kit

11.4.3 Cancelling calculation

For the task whose calculation status is Pending and Running, you can click the corresponding Cancel on the

homepage to stop the calculation (Figure.5).

NVNMD

Current user:test1 Logout
Remaining calculation time:6:21:09
Add a new task

Operation records

Calculation records Refresh
Clear calculation records

Submission time Task name Input script Calculation Cancel Calculation time
stafus calculation
2022-05-17 21:31:20 test in.Imp Cancelled 0:01:20

11.4.4 Downloading results

Download Delete record

results

Package Delete

Separate files

For the task whose calculation status is Completed, Failed and Cancelled, you can click the corresponding
Package or Separate files in the Download results bar on the homepage to download results.

Click Package to download a zipped package of all files including input files and output results (Figure.6).

NVNMD

Current user:test! Return to home page

Remaining calculation time:6:21:09

Files
Name Size Download directly Download frem enline data
storage
output.zip 1.2 MB Download

Click Separate files to download the required separate files (Figure.7).

Upload to online data storage®

Upload

11.4. Running MD

131

DeePMD-kit

NVNMD

Current user:test! Return to home page

Remaining calculation time:6:21:09

Files
Name Size Download directly Download from online data Upload to online data storage®
storage

coord.Imp 15.4 KB Download Upload
in.Imp 3.1 KB Download Upload
lammps.xyz 2.1 MB Download Upload
log.lammps 14.0 KB Download Upload
model.pb 8.1 MB Download Upload
result.out 13.5KB Download Upload

If Manual upload mode is selected or the file has expired, click Upload on the download interface to upload
manually.

11.4.5 Deleting record

For the task no longer needed, you can click the corresponding Delete on the homepage to delete the record.

Records cannot be retrieved after deletion.

11.4.6 Clearing records

Click Clear calculation records on the homepage to clear all records.

Records cannot be retrieved after clearing.

132 Chapter 11. Use NVNMD

CHAPTER

TWELVE

FAQS

As a consequence of differences in computers or systems, problems may occur. Some common circumstances
are listed as follows. In addition, some frequently asked questions are listed as follows. If other unexpected
problems occur, you're welcome to contact us for help.

12.1 How to tune Fitting/embedding-net size ?

Here are some test forms on fitting-net size tuning or embedding-net size tuning performed on several dif-
ferent systems.

12.1.1 AI203

Fitting net size tuning form on Al203: (embedding-net size: [25,50,100])

Fitting-net size Energy L2err(eV) Energy L2err/Natoms(eV) Force L2err(eV/Angstrom)

[240,240,240] 1.742252e-02 7.259383e-05 4.014115e-02
[80,80,80] 1.799349e-02 7.497287e-05 4.042977e-02
[40,40,40] 1.799036e-02 7.495984e-05 4.068806e-02
[20,20,20] 1.834032e-02 7.641801e-05 4.094784e-02
[10,10,10] 1.913058e-02 7.971073e-05 4.154775e-02
[5,5,5] 1.932914e-02 8.053808e-05 4.188052e-02
[4,4,4] 1.944832e-02 8.103467e-05 4.217826e-02
(3,3,3] 2.068631e-02 8.619296e-05 4.300497e-02
[2,2,2] 2.267962e-02 9.449840e-05 4.413609e-02
[1,1,1] 2.813596e-02 1.172332e-04 4.781115e-02
[] 3.135002e-02 1.306251e-04 5.373120e-02

[]means no hidden layer, but there is still a linear output layer. This situation is equal to the linear regression.

133

DeePMD-kit

Embedding net size tuning form on AlI203: (Fitting-net size: [240,240,240])

Embedding-net size

Energy L2err(eV)

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[25,50,
[10,20,
[5,10,2
(48,16
[3,6,12
[2,4,8]
[1,2,4]

100]
40]
0]

]

]

1.742252e-02
2.909990e-02
3.357767e-02
6.060367e-02
5.656043e-02
5.277023e-02
1.302282¢-01

7.259383e-05
1.212496e-04
1.399070e-04
2.525153e-04
2.356685e-04
2.198759e-04
5.426174e-04

4.014115e-02
4.734667e-02
5.706385e-02
7.333304e-02
7.793539e-02
7.459995e-02
9.672238e-02

12.1.2 Cu

Fitting net size tuning form on Cu: (embedding-net size: [25,50,100])

Fitting-net size

Energy L2err(eV)

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

240

,240,240]

20,20,20]

4.135548e-02
4.323858e-02
4.399364e-02
4.468404e-02
4.463580e-02
4.493758e-02
4.500736e-02
4.542073e-02
4.545168e-02

1.615449e-04
1.689007e-04
1.718502e-04
1.745470e-04
1.743586e-04
1.755374e-04
1.758100e-04
1.774247e-04
1.775456e-04

8.940946e-02
8.955762e-02
8.962891e-02
8.970111e-02
8.972011e-02
8.971303e-02
8.973878e-02
8.964761e-02
8.983201e-02

Embedding net size tuning form on Cu: (Fitting-net size: [240,240,240])

Embed

ding-net size

Energy L2err(eV)

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

25,50,

100]

20,40,80]
15,30,60]
10,20,40]

1,24]
1,2,4]

1<

]
1,2,4]

&& seed = 1
&& seed = 2
&& seed = 3
&& seed = 4

4.135548e-02
4.203562e-02
4.146672e-02
4.263060e-02
4.994913e-02
1.022157e-01
1.362098e-01
7.061800e-02
9.843161e-02
9.404335e-02
1.508016e-01
9.686949e-02

1.615449e-04
1.642016e-04
1.619794e-04
1.665258e-04
1.951138e-04
3.992802e-04
5.320695e-04
2.758515e-04
3.844985e-04
3.673568e-04
5.890688e-04
3.783965e-04

8.940946e-02
8.925881e-02
8.936911e-02
8.955818e-02
9.007786e-02
9.532119e-02
1.073860e-01
9.126418e-02
9.348505e-02
9.304089e-02
1.382356e-01
9.294820e-02

134

Chapter 12. FAQs

DeePMD-kit

12.1.3 Water

Fitting net size tuning form on water: (embedding-net size: [25,50,100])

Embedding net size tuning form on water: (Fitting-net size: [240,240,240])

Fitting-net size

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[240,240,240]
[200,200,200]
[160,160,160]
[120,120,120]
[80,80,80]
[40,40,40]
[20,20,20]
[10,10,10]
[5,5,5]

[4,4,4]

(3,3,3]

[2,2,2]

[1,1,1]

(]

9.1589E-04
9.3221E-04
9.4274E-04
9.5407E-04
9.4605E-04
9.8533E-04
1.0057E-03
1.0466E-03
1.1154E-03
1.1289E-03
1.2368E-03
1.3558E-03
1.4633E-03
1.5193E-03

5.1540E-02
5.2366E-02
5.3403E-02
5.3093E-02
5.3402E-02
5.5790E-02
5.8232E-02
6.2279E-02
6.7994E-02
6.9613E-02
7.9786E-02
9.7042E-02
1.1265E-01
1.2136E-01

Embedding-net size

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[25,50,100]
[20,40,80]
[15,30,60]
[10,20,40]
[5,10,20]
[4,8,16]
[3,6,12]
[2,4,8]
[1,2,4]

9.1589E-04
9.5080E-04
9.7996E-04
1.0353E-03
1.1254E-03
1.2495E-03
1.3604E-03
1.4358E-03
2.1765E-03

5.1540E-02
5.3593E-02
5.6338E-02
6.2776E-02
7.3195E-02
8.0371E-02
9.9883E-02
9.7389E-02
1.7276E-01

12.1. How to tune Fitting/embedding-net size ?

135

DeePMD-kit

12.1.4 Mg-Al

Fitting net size tuning form on Mg-Al: (embedding-net size: [25,50,100])

Embedding net size tuning form on Mg-Al: (Fitting-net size: [240,240,240])

Fitting-net size

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[240,240,240]
[200,200,200]
[160,160,160]
[120,120,120]
[80,80,80]
[40,40,40]
[20,20,20]
[10,10,10]
[5,5,5]

[4,4,4]

[2,2,2]

[1,1,1]

(]

3.9606e-03
3.9449e-03
4.0947e-03
3.9234e-03
3.9758e-03
3.9142e-03
4.1302e-03
4.3433e-03
5.3154e-03
5.4210e-03
6.2667e-03
7.3676e-03
7.3999e-03

1.6289e-02
1.6471e-02
1.6413e-02
1.6283e-02
1.6506e-02
1.6348e-02
1.7006e-02
1.7524e-02
1.9716e-02
1.9710e-02
2.2568e-02
2.6375e-02
2.6097e-02

Embedding-net size

Energy L2err/Natoms(eV)

Force L2err(eV/Angstrom)

[25,50,100]
[20,40,80]
[15,30,60]
[10,20,40]
[5,10,20]
[4,8,16]
[3,6,12]
[2,4,8]
[1,2,4]

3.9606e-03
4.0292e-03
4.1743e-03
4.8138e-03
5.6052e-03
6.1335e-03
6.6469e-03
6.8222¢-03
1.0678e-02

1.6289e-02
1.6555e-02
1.7026e-02
1.8516e-02
2.0709e-02
2.1450e-02
2.3003e-02
2.6318e-02
3.9559¢-02

136

Chapter 12. FAQs

DeePMD-kit

12.2 How to control the parallelism of a job?

DeePMD-kit has three levels of parallelism. To get the best performance, one should control the number of
threads used by DeePMD-kit. One should make sure the product of the parallel numbers is less than or equal
to the number of cores available.

12.2.1 MPI (optional)

Parallelism for MPI is optional and used for multiple nodes, multiple GPU cards, or sometimes multiple CPU
cores.

To enable MPI support for training, one should install horovod in advance. Note that the parallelism mode
is data parallelism, so it is not expected to see the training time per batch decreases.

MPI support for inference is not directly supported by DeePMD-kit, but indirectly supported by the third-
party software. For example, LAMMPS enables running simulations in parallel using the MPI parallel com-
munication standard with distributed data. That software has to build against MPIL.

Set the number of processes with:

[mpirun -np $num_nodes dp]

Note that mpirun here should be the same as the MPI used to build software. For example, one can use mpirun
-h and 1mp -h to see if mpirun and LAMMPS has the same MPI version.

Sometimes, $num_nodes and the nodes information can be directly given by the HPC scheduler system, if the
MPI used here is the same as the MPT used to build the scheduler system. Otherwise, one have to manually
assign these information.

12.2.2 Parallelism between independent operators

For CPU devices, TensorFlow use multiple streams to run independent operators (OP).

[export TF_INTER_OP_PARALLELISM_THREADS=3]

However, for GPU devices, TensorFlow uses only one compute stream and multiple copy streams. Note that
some of DeePMD-kit OPs do not have GPU support, so it is still encouraged to set environmental variables
even if one has a GPU.

12.2.3 Parallelism within an individual operators

For CPU devices, TF_INTRA_OP_PARALLELISM_THREADS controls parallelism within TensorFlow native OPs
when TensorFlow is built against Eigen.

[export TF_INTRA_OP_PARALLELISM_THREADS=2 }

OMP_NUM_THREADS is threads for OpenMP parallelism. It controls parallelism within TensorFlow native OPs
when TensorFlow is built by Intel OneDNN and DeePMD-kit custom CPU OPs. It may also control parallelsim
for NumPy when NumPy is built against OpenMP, so one who uses GPUs for training should also care this
environmental variable.

[export OMP_NUM_THREADS=2 }

12.2. How to control the parallelism of a job? 137

https://docs.lammps.org/Developer_parallel.html

DeePMD-kit

There are several other environmental variables for OpenMP, such as KMP_BLOCKTIME. See Intel documenta-
tion for detailed information.

12.2.4 Tune the performance
There is no one general parallel configuration that works for all situations, so you are encouraged to tune
parallel configurations yourself after empirical testing.

Here are some empirical examples. If you wish to use 3 cores of 2 CPUs on one node, you may set the envi-
ronmental variables and run DeePMD-kit as follows:

s Y
export OMP_NUM_THREADS=3

export TF_INTRA_OP_PARALLELISM_THREADS=3
export TF_INTER_OP_PARALLELISM_THREADS=2
\dp train input.json

For a node with 128 cores, it is recommended to start with the following variables:

s Y

export OMP_NUM_THREADS=16

export TF_INTRA_OP_PARALLELISM_THREADS=16
export TF_INTER_OP_PARALLELISM_THREADS=8
=

Again, in general, one should make sure the product of the parallel numbers is less than or equal to the
number of cores available. In the above case, 16 x 8 = 128, so threads will not compete with each other.

12.3 Do we need to set rcut < half boxsize?

When seeking the neighbors of atom i under periodic boundary conditions, DeePMD-kit considers all j atoms
within cutoff rcut from atom i in all mirror cells.

So, there is no limitation on the setting of rcut.

PS: The reason why some software requires rcut < half box size is that they only consider the nearest mirrors
from the center cell. DeePMD-kit is different from them.

12.4 How to set sel?

sel is short for “selected number of atoms in rcut”.

sel_ali] is a list of integers. The length of the list should be the same as the number of atom types in the
system.

sel_ali] gives the number of the selected number of type i neighbors within rcut. To ensure that the results
are strictly accurate, sel_a[i] should be larger than the largest number of type i neighbors in the rcut.

However, the computation overhead increases with sel_ali], therefore, sel_al[i] should be as small as
possible.

The setting of sel_al[i] should balance the above two considerations.

138 Chapter 12. FAQs

https://www.intel.com/content/www/us/en/developer/articles/technical/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference.html
https://www.intel.com/content/www/us/en/developer/articles/technical/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference.html

DeePMD-kit

12.5 Installation

12.5.1 Inadequate versions of gcc/g++

Sometimes you may use a gcc/g++ of version < 4.8. In this way, you can still compile all the parts of Tensor-
Flow and most of the parts of DeePMD-kit, but i-Pi and GROMACS plugins will be disabled automatically.
Or if you have a gce/g++ of version > 4.8, say, 7.2.0, you may choose to use it by doing

export CC=/path/to/gcc-7.2.0/bin/gcc
export CXX=/path/to/gcc-7.2.0/bin/g++

12.5.2 Build files left in DeePMD-kit

When you try to build a second time when installing DeePMD-Kkit, files produced before may contribute to
failure. Thus, you may clear them by

cd build
rm -r *

and redo the cmake process.

12.6 The temperature undulates violently during the early stages of MD

This is probably because your structure is too far from the equilibrium configuration.

To make sure the potential model is truly accurate, we recommend checking model deviation.

12.7 MD: cannot run LAMMPS after installing a new version of
DeePMD-kit

This typically happens when you install a new version of DeePMD-kit and copy directly the generated
USER-DEEPMD to a LAMMPS source code folder and re-install LAMMPS.

To solve this problem, it suffices to first remove USER-DEEPMD from the LAMMPS source code by

[make no-user-deepmd }

and then install the new USER-DEEPMD.

If this does not solve your problem, try to decompress the LAMMPS source tarball and install LAMMPS from
scratch again, which typically should be very fast.

12.5. Installation 139

DeePMD-kit

12.8 Model compatibility

When the version of DeePMD-kit used to train the model is different from the that of DeePMD-kit running
MDs, one has the problem of model compatibility.

DeePMD-kit guarantees that the codes with the same major and minor revisions are compatible. That is to
say, v0.12.5 is compatible with v0.12.0, but is not compatible with v0.11.0 or v1.0.0.

One can execute dp convert-from to convert an old model to a new one.

Model version v0.12 v1.0 v1.1 v1.2 v13 v2.0 v2.1
Compatibility ®& ® ® ® ®

Legend:
¢ ®: The model is compatible with the DeePMD-kit package.

¢ ®: The model is incompatible with the DeePMD-kit package, but one can execute dp convert-from
to convert an old model to v2.1.

¢ @: The model is incompatible with the DeePMD-kit package, and there is no way to convert models.

12.9 Why does a model have low precision?

Many phenomena are caused by model accuracy. For example, during simulations, temperatures explode,
structures fall apart, and atoms are lost. One can test the model to confirm whether the model has the enough
accuracy.

There are many reasons for a low-quality model. Some common reasons are listed below.

12.9.1 Data

Data units and signs

The unit of training data should follow what is listed in data section. Usually, the package to calculate the
training data has different units from those of the DeePMD-kit. It is noted that some software label the
energy gradient as forces, instead of the negative energy gradient. It is neccessary to check them carefully
to avoid inconsistent data.

SCF coverage and data accuracy

The accuracy of models will not exceed the accuracy of training data, so the training data should reach
enough accuracy. Here is a checklist for the accuracy of data:

SCF should converge to a suitable threshold for all points in the training data.

e The convergence of the energy, force and virial with respect to the energy cutoff and k-spacing sample
is checked.

» Sometimes, QM software may generate unstable outliers, which should be removed.

The data should be extracted with enough digits and stored with the proper precision. Large energies
may have low precision when they are stored as the single-precision floating-point format (FP32).

140 Chapter 12. FAQs

DeePMD-kit

Enough data
If the model performs good on the training data, but has bad accuracy on another data, this means some
data space is not covered by the training data. It can be validated by evaluting the model deviation with

multiple models. If the model deviation of these data is high for some data, try to collect more data using
DP-GEN.

Values of data

One should be aware that the errors of some data is also affected by the absolute values of this data. Stable
structures tend to be more precise than unstable structures because unstable structures may have larger
forces. Also, errors will be introduced in the Projector augmented wave (PAW) DFT calculations when the

atoms are very close due to the overlap of pseudo-potentials. It is expected to see that data with large forces
has larger errors and it is better to compare different models only with the same data.

12.9.2 Model

Enough sel

The sel of the descriptors must be enough for both training and test data. Otherwise, the model will be
unreliable and give wrong results.

Cutoff radius

The model cannot fit the long-term interaction out of the cutoff radius. This is a designed approximation for
performance, but one has to choose proper cutoff radius for the system.

Neural network size

The size of neural networks will affect the accuracy, but if one follows the parameters in the examples, this
effect is insignificant. See FAQ: How to tune Fitting/embedding-net size for details.

Neural network precision

In some cases, one may want to use the FP32 precision to make the model faster. For some applications, FP32
is enough and thus is recommended, but one should still be aware that the precision of FP32 is not as high as
that of FP64.

12.9.3 Training
Training steps
Generally speaking, the longer the number of training steps, the better the model. A balance between model

accuracy and training time can be achieved. If one finds that model accuracy decreases with training time,
there may be a problem with the data. See the data section for details.

12.9. Why does a model have low precision? 141

DeePMD-kit

Learning rate

Both too large and too small learning rate may affect the training. It is recommended to start with a large
learning rate and end with a small learning rate. The learning rate from the examples is a good choice to

start.

142 Chapter 12. FAQs

CHAPTER

THIRTEEN

FIND DEEPMD-KIT C/C++ LIBRARY FROM CMAKE

After DeePMD-kit C/C++ library is installed, one can find DeePMD-kit from CMake:

[find_package(DeePMD REQUIRED)

Note that you may need to add ${deepmd_root} to the cached CMake variable CMAKE_PREFIX_PATH.

To link against the C interface library, using

[target_link_libraries(some_library PRIVATE DeePMD: :deepmd_c)

To link against the C++ interface library, using

[target_link_libraries(some_library PRIVATE DeePMD: :deepmd_cc)

143

DeePMD-kit

144 Chapter 13. Find DeePMD-kit C/C++ library from CMake

CHAPTER
FOURTEEN

CODING CONVENTIONS

14.1 Preface

The aim of these coding standards is to help create a codebase with a defined and consistent coding style
that every contributor can get easily familiar with. This will in enhance code readability as there will be no
different coding styles from different contributors and everything will be documented. Also, PR diffs will be
smaller because of the unified coding style. Finally, static typing will help in hunting down potential bugs
before the code is even run.

Contributed code will not be refused merely because it does not strictly adhere to these conditions; as long
as it’s internally consistent, clean, and correct, it probably will be accepted. But don’t be surprised if the
“offending” code gets fiddled with overtime to conform to these conventions.

There are also GitHub actions CI checks for python code style which will annotate the PR diff for you to see
the areas where your code is lacking compared to the set standard.

14.2 Rules

The code must be compatible with the oldest supported version of python which is 3.7

The project follows the generic coding conventions as specified in the Style Guide for Python Code, Docstring
Conventions and Typing Conventions PEPs, clarified and extended as follows:

¢ Do not use “*” imports such as from module import *. Instead, list imports explicitly.
¢ Use 4 spaces per indentation level. No tabs.
e No one-liner compound statements (i.e., no if x: return: use two lines).

e Maximum line length is 88 characters as recommended by black which is less strict than Docstring
Conventions suggests.

e Use “StudlyCaps” for class names.

e Use “lowercase” or “lowercase with underscores” for function, method, variable names and module
names. For short names, joined lowercase may be used (e.g. “tagname”). Choose what is most readable.

¢ No single-character variable names, except indices in loops that encompass a very small number of
lines (for i in range(5): ...).

o Avoid lambda expressions. Use named functions instead.
¢ Avoid functional constructs (filter, map, etc.). Use list comprehensions instead.

¢ Use "double quotes" for string literals, and """triple double quotes""" for docstring’s. Single
quotes are OK for something like

145

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0484/
https://github.com/psf/black
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0257/

DeePMD-kit

[f"something 'this' if x else 'that'}t"]

e Use f-strings s = £"{x:.2f}" instead of old style formating with "%f" % x. string format method
"{x:.2f}".format () may be used sparsely where it is more convenient than f-strings.

14.3 Whitespace

Python is not C/C++ so whitespace should be used sparingly to maintain code readability
¢ Read the Whitespace in Expressions and Statements section of PEPS.
¢ Avoid trailing whitespaces.
¢ Do not use excessive whitespace in your expressions and statements.

¢ You should have blank spaces after commas, colons, and semi-colons if it isn’t trailing next to the end
of a bracket, brace, or parentheses.

* With any operators you should use space on both sides of the operator.
 Colons for slicing are considered a binary operator, and should not have any spaces between them.

¢ You should have parentheses with no space, directly next to the function when calling functions
function().

¢ When indexing or slicing the brackets should be directly next to the collection with no space
collection["index"].

¢ Whitespace used to line up variable values is not recommended.

¢ Make sure you are consistent with the formats you choose when optional choices are available.

14.4 General advice

¢ Getrid of as many break and continue statements as possible.
e Write short functions. All functions should fit within a standard screen.

¢ Use descriptive variable names.

14.5 Writing documentation in the code

Here is an example of how to write good docstrings:
https://github.com/numpy/numpy/blob/master/doc/example.py
The NumPy docstring documentation can be found here

Tt is a good practice to run pydocstyle check on your code or use a text editor that does it automatically):

£$ pydocstyle filename.py }

146 Chapter 14. Coding Conventions

https://www.python.org/dev/peps/pep-0008/
http://www.gnu.org/software/emacs/manual/html_node/emacs/Useless-Whitespace.html
https://github.com/numpy/numpy/blob/master/doc/example.py
https://numpydoc.readthedocs.io/en/latest/format.html
https://github.com/PyCQA/pydocstyle

DeePMD-kit

14.6 Run pycodestyle on your code

It’s a good idea to run pycodestyle on your code (or use a text editor that does it automatically):

[$ pycodestyle filename.py

14.7 Run mypy on your code

It’s a good idea to run mypy on your code (or use a text editor that does it automatically):

£$ mypy filename.py

14.8 Run pydocstyle on your code

It’s a good idea to run pycodestyle on your code (or use a text editor that does it automatically):

[$ pycodestyle filename.py --max-line-length=88

14.9 Run black on your code

Another method of enforcing PEPS8 is using a tool such as black. These tools tend to be very effective at
cleaning up code but should be used carefully and code should be retested after cleaning it. Try:

£$ black --help

14.6. Run pycodestyle on your code 147

https://github.com/PyCQA/pycodestyle
https://github.com/PyCQA/pycodestyle
https://github.com/PyCQA/pycodestyle
https://www.python.org/dev/peps/pep-0008/
https://github.com/psf/black

DeePMD-kit

148 Chapter 14. Coding Conventions

CHAPTER

FIFTEEN

CREATE A MODEL

If you’d like to create a new model that isn’t covered by the existing DeePMD-kit library, but reuse DeePMD-
kit’s other efficient modules such as data processing, trainner, etc, you may want to read this section.

To incorporate your custom model you’ll need to:

1. Register and implement new components (e.g. descriptor) in a Python file. You may also want to
register new TensorFlow OPs if necessary.

2. Register new arguments for user inputs.
3. Package new codes into a Python package.

4. Test new models.

15.1 Design a new component

When creating a new component, take descriptor as the example, you should inherit deepmd. descriptor.
descriptor.Descriptor class and override several methods. Abstract methods such as deepmd.
descriptor.descriptor.Descriptor. build must be implemented and others are not. You should keep
arguments of these methods unchanged.

After implementation, you need to register the component with a key:

from deepmd.descriptor import Descriptor

@Descriptor.register("some_descrpt")
class SomeDescript(Descriptor):
def __init__(self, argl: bool, arg2: float) -> None:
pass

15.2 Register new arguments

To let someone uses your new component in their input file, you need to create a new method that returns
some Argument of your new component, and then register new arguments. For example, the code below

from typing import List

from dargs import Argument
from deepmd.utils.argcheck import descrpt_args_plugin

(continues on next page)

149

DeePMD-kit

(continued from previous page)

@descrpt_args_plugin.register("some_descrpt")
def descrpt_some_args() -> List[Argument]:
return [
Argument ("argl", bool, optional=False, doc="balabala"),
Argument ("arg2", float, optional=True, default=6.0, doc="haha"),

allows one to use your new descriptor as below:

"descriptor" :{
"type": "some_descrpt",
"argl": true,
"arg2": 6.0

The arguments here should be consistent with the class arguments of your new component.

15.3 Package new codes

You may use setuptools to package new codes into a new Python package. It’s crucial to add your new
component to entry_points['deepmd'] in setup.py:

entry_points={
'deepmd': [
'some_descrpt=deepmd_some_descrtpt:SomeDescript',
1,
P

where deepmd_some_descrtpt is the module of your codes. It is equivalent to from deepmd_some_descrtpt
import SomeDescript.

If you place SomeDescript and descrpt_some_args into different modules, you are also expected to add
descrpt_some_args to entry_points.

After you install your new package, you can now use dp train to run your new model.

150 Chapter 15. Create a model

CHAPTER
SIXTEEN

ATOM TYPE EMBEDDING

16.1 Overview

Here is an overview of the DeePMD-kit algorithm. Given a specific centric atom, we can obtain the matrix
describing its local environment, named R. It is consist of the distance between the centric atom and its
neighbors, as well as a direction vector. We can embed each distance into a vector of M; dimension by
an embedding net, so the environment matrix R can be embedded into matrix G. We can thus extract
a descriptor vector (of M; x My dim) of the centric atom from the G by some matrix multiplication, and
put the descriptor into fitting net to get predicted energy E. The vanilla version of DeePMD-kit builds
embedding net and fitting net relying on the atom type, resulting in O(/N) memory usage. After applying
atom type embedding, in DeePMD-kit v2.0, we can share one embedding net and one fitting net in total,
which decline training complexity largely.

16.2 Preliminary

In the following chart, you can find the meaning of symbols used to clarify the atom-type embedding algo-
rithm.

i: Type of centric atom

j: Type of neighbor atom

si;: Distance between centric atom and neighbor atom

G;;j(+): Origin embedding net, take s;; as input and output embedding vector of M; dim

G(-): Shared embedding net

Multi(-): Matrix multiplication and flattening, output the descriptor vector of M; x Ms dim

F;(+): Origin fitting net, take the descriptor vector as input and output energy

F(-): Shared fitting net

A(+): Atom type embedding net, input is atom type, the output is type embedding vector of dim nchanl

So, we can formulate the training process as follows. Vanilla DeePMD-kit algorithm:
E= Fi (Multl(g” (Sij)))
DeePMD-kit applying atom type embedding;:

E = F(Multi(G([si;, A(i), A(7)])), AG)])

151

DeePMD-kit

E = F(Multi(G([sij, A(5)])), A(j)])

The difference between the two variants above is whether using the information of centric atom when gener-
ating the descriptor. Users can choose by modifying the type_one_side hyper-parameter in the input JSON
file.

16.3 How to use

A detailed introduction can be found at se_e2_a_tebd. Looking for a fast start-up, you can simply add a
type_embedding section in the input JSON file as displayed in the following, and the algorithm will adopt
the atom type embedding algorithm automatically. An example of type_embedding is like

"type_embedding" : {

"neuron": [2, 4, 8],
"resnet_dt": false,
"seed": 1

16.4 Code Modification

Atom-type embedding can be applied to varied embedding net and fitting net, asa result, we build a class
TypeEmbedNet to support this free combination. In the following, we will go through the execution process
of the code to explain our code modification.

16.4.1 trainer (train/trainer.py)

In trainer.py, it will parse the parameter from the input JSON file. If a type_embedding section is detected,
it will build a TypeEmbedNet, which will be later input in the model. model will be built in the function

_build_network.

16.4.2 model (model/ener.py)

When building the operation graph of the model in model.build. If a TypeEmbedNet is detected, it will build
the operation graph of type embed net, embedding net and fitting net by order. The building process
of type embed net can be found in TypeEmbedNet .build, which output the type embedding vector of each
atom type (of [ntypes x nchanl] dimensions). We then save the type embedding vector into input_dict, so
that they can be fetched later in embedding net and fitting net.

152 Chapter 16. Atom Type Embedding

DeePMD-kit

16.4.3 embedding net (descriptor/se*.py)

In embedding net, we shall take local environment R as input and output matrix G. Functions called in this
process by the order is

[build -> _pass_filter -> _filter -> _filter_lower }

_pass_filter: It will first detect whether an atom type embedding exists, if so, it will apply atom type
embedding algorithm and doesn’t divide the input by type.

_filter: It will call _filter_lower function to obtain the result of matrix multiplication (GT - R), do further
multiplication involved in Multi(-), and finally output the result of descriptor vector of M; x M, dim.

_filter_lower: The main function handling input modification. If type embedding exists, it will call
_concat_type_embedding function to concat the first column of input R (the column of s;;) with the atom
type embedding information. It will decide whether to use the atom type embedding vector of the centric
atom according to the value of type_one_side (if set True, then we only use the vector of the neighbor atom).
The modified input will be put into the fitting net to get G for further matrix multiplication stage.

16.4.4 fitting net (fit/ener.py)

In fitting net, it takes the descriptor vector as input, whose dimension is [natoms, M; x Ms]. Because
we need to involve information on the centric atom in this step, we need to generate a matrix named
atype_embed (of dim [natoms, nchanl]), in which each row is the type embedding vector of the specific cen-
tric atom. The input is sorted by type of centric atom, we also know the number of a particular atom type
(stored in natoms [2+i]), thus we get the type vector of the centric atom. In the build phase of the fitting net,
it will check whether type embedding exists in input_dict and fetch them. After that, call embed_atom_type
function to look up the embedding vector for the type vector of the centric atom to obtain atype_embed, and
concat input with it ([input, atype_embed]). The modified input goes through fitting net' to get predicted
energy.

Note: You can’t apply the compression method while using atom-type embedding.

16.4. Code Modification 153

DeePMD-kit

154 Chapter 16. Atom Type Embedding

CHAPTER

SEVENTEEN

PYTHON API

17.1 deepmd package

Root of the deepmd package, exposes all public classes and submodules.

class deepmd.DeepEval(model file: Path, load prefix: str = "load’, default_tf graph: bool = False,
auto_batch_size: bool | int | AutoBatchSize = False)

Bases: object
Common methods for DeepPot, DeepWFC, DeepPolar, ...
Parameters

model file
[Path] The name of the frozen model file.

load_prefix: str
The prefix in the load computational graph

default_tf graph
[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

auto_batch_size
[bool or int or AutomaticBatchSize, default: False] If True, automatic batch size
will be used. If int, it will be used as the initial batch size.

Attributes

model_type
Get type of model.

model_version
Get version of model.

Sess
Get TF session.

155

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#False

DeePMD-kit

Methods
eval_typeedbd() Evaluate output of type embedding network by
using this model.
make_natoms_vec(atom_types[, mixed type]) Make the natom vector used by deepmd-kit.
reverse_map(vec, imap) Reverse mapping of a vector according to the in-
dex map.

sort_input(coord, atom_type[, sel atoms, ...]) Sort atoms in the system according their types.

eval_typeebd() — ndarray
Evaluate output of type embedding network by using this model.

Returns

np.ndarray
The output of type embedding network. The shape is [ntypes, o_size], where ntypes
is the number of types, and o_size is the number of nodes in the output layer.

Raises

KeyError
If the model does not enable type embedding.

See also:

deepmd.utils.type_embed. TypeEmbedNet
The type embedding network.

Examples

Get the output of type embedding network of graph.pb:

>>> from deepmd.infer import DeepPotential
>>> dp = DeepPotential('graph.pb')
>>> dp.eval_typeebd()

load_prefix: str

make_natoms_vec(atom_types: ndarray, mixed type: bool = False) — ndarray

Make the natom vector used by deepmd-kit.
Parameters

atom_types
The type of atoms

mixed type
Whether to perform the mixed type mode. If True, the input data has the
mixed type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

Returns

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

156 Chapter 17. Python API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

DeePMD-kit

property model_type: str
Get type of model.

‘type:str
property model_version: str
Get version of model.
Returns

str
version of model

static reverse_map(vec: ndarray, imap: List[int]) — ndarray
Reverse mapping of a vector according to the index map.
Parameters

vec
Input vector. Be of shape [nframes, natoms, -1]

imap
Index map. Be of shape [natoms]

Returns

vec_out
Reverse mapped vector.
property sess: Session
Get TF session.
static sort_input (coord: ndarray, atom type: ndarray, sel atoms: List[int] | None = None,
mixed_type: bool = False)

Sort atoms in the system according their types.
Parameters

coord
The coordinates of atoms. Should be of shape [nframes, natoms, 3]

atom_type
The type of atoms Should be of shape [natoms]

sel atoms
The selected atoms by type

mixed type
Whether to perform the mixed type mode. If True, the input data has the
mixed type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

Returns

coord_out
The coordinates after sorting

atom_type_out
The atom types after sorting

idx_map
The index mapping from the input to the output. For example coord out = co-
ord[:,idx_map,:]

17.1. deepmd package 157

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

DeePMD-kit

sel_atom_type
Only output if sel atoms is not None The sorted selected atom types

sel_idx_map
Only output if sel atoms is not None The index mapping from the selected atoms
to sorted selected atoms.

deepmd.DeepPotential (model file: str | Path, load prefix: str = load’, default_tf graph: bool = False) —
DeepDipole | DeepGlobalPolar | DeepPolar | DeepPot | DeepWFC

Factory function that will inialize appropriate potential read from model file.
Parameters

model file
[str] The name of the frozen model file.

load_prefix
[str] The prefix in the load computational graph

default tf graph
[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

Returns

Union[DeepDipole, DeepGlobalPolar, DeepPolar, DeepPot, DeepWFC]
one of the available potentials

Raises

RuntimeError
if model file does not correspond to any implementd potential

class deepmd.DipoleChargeModifier (model name: str, model charge map: List[float],
sys_charge map: List[float], ewald_h: float = 1, ewald_beta: float

Bases: DeepDipole

Parameters

model name
The model file for the DeepDipole model

model _charge map
Gives the amount of charge for the wfcc

sys_charge map
Gives the amount of charge for the real atoms

ewald h
Grid spacing of the reciprocal part of Ewald sum. Unit: A

ewald beta
Splitting parameter of the Ewald sum. Unit: A*~{-1}

Attributes

model_type
Get type of model.

model_version
Get version of model.

sess
Get TF session.

158 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

DeePMD-kit

Methods

build_fv_graph()

eval(coord, box, atype[, eval fv])
eval_full(coords, cells, atom_types], ...])

eval_typeebd()

get_dim_aparam()

get_dim_fparam()

get_ntypes()

get_rcut()

get_sel_type()

get_type_map()
make_natoms_vec(atom_types[, mixed type])
modify_data(data)

reverse_map(vec, imap)

sort_input(coord, atom_type[, sel atoms, ...])

Build the computational graph for the force and
virial inference.

Evaluate the modification.

Evaluate the model with interface similar to the
energy model.

Evaluate output of type embedding network by
using this model.

Unsupported in this model.

Unsupported in this model.

Get the number of atom types of this model.
Get the cut-off radius of this model.

Get the selected atom types of this model.

Get the type map (element name of the atom
types) of this model.

Make the natom vector used by deepmd-kit.
Modify data.

Reverse mapping of a vector according to the in-
dex map.

Sort atoms in the system according their types.

build_fv_graph() — Tensor

Build the computational graph for the force and virial inference.

eval (coord: ndarray, box: ndarray, atype: ndarray, eval fv: bool = True) — Tuple[ndarray,

ndarray, ndarray]
Evaluate the modification.
Parameters

coord
The coordinates of atoms

box

The simulation region. PBC is assumed

atype
The atom types

eval fv
Evaluate force and virial

Returns

tot_e
The energy modification

tot_f
The force modification

tot_v
The virial modification

load_prefix: str

17.1. deepmd package

159

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

modify_data(data: dict) — None
Modify data.

Parameters

data
Internal data of DeepmdData. Be a dict, has the following keys - coord coordi-
nates - box simulation box - type atom types - find_energy tells if data has energy
- find_force tells if data has force - find_virial tells if data has virial - energy energy
- force force - virial virial

17.1.1 Subpackages

deepmd.cluster package

Module that reads node resources, auto detects if running local or on SLURM.

deepmd.cluster.get_resource() — Tuple[str, List[str], List[int] | None]
Get local or slurm resources: nodename, nodelist, and gpus.

Returns

Tuple[str, List[str], Optional[List[int]]]
nodename, nodelist, and gpus

Submodules
deepmd.cluster.local module

Get local GPU resources.

deepmd.cluster.local.get_gpus()
Get available IDs of GPU cards at local. These IDs are valid when used as the TensorFlow device ID.

Returns

Optional[List[int]]
List of available GPU IDs. Otherwise, None.

deepmd.cluster.local.get_resource() — Tuple[str, List[str], List[int] | None]
Get local resources: nodename, nodelist, and gpus.

Returns

Tuple[str, List[str], Optional[List[int]]]
nodename, nodelist, and gpus

160 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

deepmd.cluster.slurm module

MOdule to get resources on SLURM cluster.

References

https://github.com/deepsense-ai/tensorflow on_slurm #Ht#

deepmd.cluster.slurm.get_resource() — Tuple[str, List[str], List[int] | None]

Get SLURM resources: nodename, nodelist, and gpus.
Returns

Tuple[str, List[str], Optional[List[int]]]
nodename, nodelist, and gpus

Raises

RuntimeError
if number of nodes could not be retrieved

ValueError
list of nodes is not of the same length sa number of nodes

ValueError
if current nodename is not found in node list

deepmd.descriptor package

class deepmd.descriptor.Descriptor (*args, **kwargs)

Bases: PluginVariant
The abstract class for descriptors. All specific descriptors should be based on this class.

The descriptor D describes the environment of an atom, which should be a function of coordinates and
types of its neighbour atoms.

Notes

Only methods and attributes defined in this class are generally public, that can be called by other classes.

Examples

>>> descript = Descriptor(type="se_e2_a", rcut=6., rcut_smth=0.5, sel=[50])
>>> type(descript)
<class 'deepmd.descriptor.se_a.DescrptSeA'>

17.1. deepmd package 161

https://github.com/deepsense-ai/tensorflow_on_slurm
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

DeePMD-kit

Methods

build(coord_, atype , natoms, box_, mesh, ...)

build_type_ezclude_mask(exclude types, ...)
compute_input_stats(data coord, data box,

)

enable_compression(min_nbor_dist, graph, ...)

enable_mized_precision((mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_tensor_names([suffix])
init_variables(graph, graph def[, suffix])

pass_tensors_from_frz_model(*tensors)

prod_force_virial(atom_ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max nbor size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed_dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cut-off radius.

Get names of tensors.

Init the embedding net variables with the given
dict.

Pass the descrpt_reshape tensor as well as de-
scrpt,_deriv tensor from the frz graph_def.
Compute force and virial.

Register a descriptor plugin.

abstract build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor,
input_dict: Dict[str, Any], reuse: bool | None = None, suffix: str = ") — Tensor

Build the computational graph for the descriptor.

Parameters

coord_

[tf.Tensor] The coordinate of atoms

atype
[tf.Tensor] The type of atoms

natoms

[tf.Tensor] The number of atoms. This tensor has the length of Ntypes + 2
natoms[0]: number of local atoms natoms[1]: total number of atoms held by this
processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of frames

mesh
[tf.Tensor] For historical reasons, only the length of the Tensor matters. if size of
mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

[dict[str, Any]] Dictionary for additional inputs

reuse

[bool, optional] The weights in the networks should be reused when get the vari-

able.

162

Chapter 17. Python API

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

DeePMD-kit

suffix
[str, optional] Name suffix to identify this descriptor

Returns

descriptor: tf.Tensor
The output descriptor

Notes

This method must be implemented, as it’s called by other classes.
build_type_exclude_mask (exclude types: List[Tuple[int, int]], ntypes: int, sel: List[int], ndescrpt:
int, atype: Tensor, shape0: Tensor) — Tensor

Build the type exclude mask for the descriptor.
Parameters

exclude types
[List[Tuple[int, int]]] The list of excluded types, e.g. [(0, 1), (1, 0)] means the
interaction between type 0 and type 1 is excluded.

ntypes
[int] The number of types.

sel
[List[int]] The list of the number of selected neighbors for each type.

ndescrpt
[int] The number of descriptors for each atom.

atype
[tf.Tensor] The type of atoms, with the size of shape0.

shape0
[tf.Tensor] The shape of the first dimension of the inputs, which is equal to nsam-
ples * natoms.

Returns

tf.Tensor
The type exclude mask, with the shape of (shape0, ndescrpt), and the precision of
GLOBAL_TF _FLOAT PRECISION. The mask has the value of 1 if the interaction
between two types is not excluded, and 0 otherwise.

Notes

To exclude the interaction between two types, the derivative of energy with respect to distances
(or angles) between two atoms should be zero[R08579741114c-1] , i.e.

OFE
Vi € typel,j € type2, — =0
8rij
When embedding networks between every two types are built, we can just remove that network.
But when type_one_side is enabled, a network may be built for multiple pairs of types. In this
case, we need to build a mask to exclude the interaction between two types.

The mask assumes the descriptors are sorted by neighbro type with the fixed number of given sel
and each neighbor has the same number of descriptors (for example 4).

17.1. deepmd package 163

https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

References

(1]

abstract compute_input_stats(data_coord: List[ndarray], data_box: List[ndarray], data_atype:
List[ndarray], natoms_vec: List[ndarray], mesh: List[ndarray],
input_dict: Dict[str, List[ndarray]]) — None
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters

data_coord
[list[np.ndarray]] The coordinates. Can be generated by deepmd.model.
model_stat.make_stat_input ()

data_box
[list[np.ndarray]] The box. Can be generated by deepmd.model.model_stat.
make_stat_input ()

data_atype
[list[np.ndarray]] The atom types. Can be generated by deepmd.model.
model_stat.make_stat_input ()

natoms vec
[list[np.ndarray]] The vector for the number of atoms of the system and
different types of atoms. Can be generated by deepmd.model.model_stat.
make_stat_input ()

mesh
[list[np.ndarray]] The mesh for neighbor searching. Can be generated by
deepmd.model.model_stat.make_stat_input ()

input_dict
[dict[str, list[np.ndarray]]] Dictionary for additional input

Notes

This method must be implemented, as it’s called by other classes.

enable_compression(min_nbor dist: float, graph: Graph, graph def: GraphDef, table_extrapolate:
float = 5.0, table_stride 1: float = 0.01, table_stride 2: float = 0.1,
check frequency: int = -1, suffix: str =) — None

Reveive the statisitcs (distance, max nbor size and env_mat _range) of the training data.
Parameters

min_nbor_dist
[float] The nearest distance between atoms

graph
[tf.Graph] The graph of the model

graph def
[tf.GraphDef] The graph definition of the model

table_extrapolate
[float, default: 5.] The scale of model extrapolation

164 Chapter 17. Python API

https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/functions.html#float

DeePMD-kit

table_stride 1
[float, default: 0.01] The uniform stride of the first table

table stride 2
[float, default: 0.1] The uniform stride of the second table

check frequency
[int, default: -1] The overflow check frequency

suffix
[str, optional] The suffix of the scope

Notes

This method is called by others when the descriptor supported compression.

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.
Parameters

mixed prec
The mixed precision setting used in the embedding net

Notes

This method is called by others when the descriptor supported compression.

abstract get_dim_out() — int
Returns the output dimension of this descriptor.

Returns

int
the output dimension of this descriptor

Notes

This method must be implemented, as it’s called by other classes.

get_dim_rot_mat_1() — int
Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3.
Returns
int
the first dimension of the rotation matrix

get_feed_dict(coord : Tensor, atype : Tensor, natoms: Tensor, box: Tensor, mesh: Tensor) —
Dict[str, Tensor]

Generate the feed dict for current descriptor.
Parameters

coord
[tf.Tensor] The coordinate of atoms

atype_
[tf.Tensor] The type of atoms

17.1. deepmd package 165

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

natoms
[tf.Tensor] The number of atoms. This tensor has the length of Ntypes + 2
natoms[0]: number of local atoms natoms[1]: total number of atoms held by this
processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box
[tf.Tensor] The box. Can be generated by deepmd.model.make stat_input

mesh
[tf.Tensor] For historical reasons, only the length of the Tensor matters. if size of
mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.
Returns
feed dict

[dict[str, tf.Tensor]] The output feed dict of current descriptor

get_nlist () — Tuple[Tensor, Tensor, List[int], List[int]]
Returns neighbor information.

Returns

nlist
[tf.Tensor] Neighbor list

rij
[tf.Tensor] The relative distance between the neighbor and the center atom.

sel a
[1ist[int]] The number of neighbors with full information

sel r
[1ist[int]] The number of neighbors with only radial information

abstract get_ntypes() — int
Returns the number of atom types.

Returns
int
the number of atom types

Notes

This method must be implemented, as it’s called by other classes.

abstract get_rcut() — float
Returns the cut-off radius.

Returns

float
the cut-off radius

166 Chapter 17. Python API

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

DeePMD-kit

Notes
This method must be implemented, as it’s called by other classes.
get_tensor_names (suffix: str = ") — Tuple[str]
Get names of tensors.
Parameters

suffix
[str] The suffix of the scope

Returns

Tuple[str]
Names of tensors

init_variables(graph: Graph, graph_def: GraphDef, suffix: str
Init the embedding net variables with the given dict.

=) — None

Parameters

graph
[tf.Graph] The input frozen model graph

graph_def
[tf.GraphDef] The input frozen model graph_def

suffix
[str, optional] The suffix of the scope

Notes

This method is called by others when the descriptor supported initialization from the given vari-

ables.
pass_tensors_from_frz_model (*tensors: Tensor) — None

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.
Parameters

*tensors
[tf.Tensor] passed tensors

Notes
The number of parameters in the method must be equal to the numbers of returns in

get_tensor_names ().
abstract prod_force_virial(atom_ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor,

Tensor]
Compute force and virial.
Parameters

atom_ener
[tf.Tensor] The atomic energy

167

17.1. deepmd package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.Tuple
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

natoms
[tf.Tensor] The number of atoms. This tensor has the length of Ntypes + 2
natoms[0]: number of local atoms natoms[1]: total number of atoms held by this
processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns

force
[tf.Tensor] The force on atoms

virial
[tf.Tensor] The total virial

atom_virial
[tf.Tensor | The atomic virial

static register (key: str) — Descriptor

Register a descriptor plugin.
Parameters

key
[str] the key of a descriptor

Returns

Descriptor
the registered descriptor

Examples

>>> @Descriptor.register("some_descrpt")
class SomeDescript(Descriptor):
pass

class deepmd.descriptor.DescrptHybrid(*args, **kwargs)

Bases: Descriptor
Concate a list of descriptors to form a new descriptor.
Parameters

list
[1ist] Build a descriptor from the concatenation of the list of descriptors.

168 Chapter 17. Python API

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

DeePMD-kit

Methods

build(coord_, atype , natoms, box_, mesh, ...) Build the computational graph for the descrip-
tor.

build_type_exclude_mask(exclude types, ...) Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, Compute the statisitcs (avg and std) of the train-

) ing data.

enable_compression(min nbor dist, graph,...) Reveive the statisitcs (distance, max nbor size
and env_mat_range) of the training data.

enable_mized_precision((mixed prec]) Reveive the mixed precision setting.

get_dim_out() Returns the output dimension of this descriptor.

get_dim_rot_mat_1() Returns the first dimension of the rotation ma-
trix.

get_feed_dict(coord , atype , natoms, box, Generate the feed dict for current descriptor.

mesh)

get_nlist() Get the neighbor information of the descriptor,

returns the nlist of the descriptor with the largest
cut-off radius.

get_nlist_4(ii) Get the neighbor information of theii-th descrip-
tor.

get_ntypes() Returns the number of atom types.

get_rcut() Returns the cut-off radius.

get_tensor_names([suffix]) Get names of tensors.

init_variables(graph, graph_def[, suffix]) Init the embedding net variables with the given
dict.

merge_input_stats(stat_dict) Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self.dstd.

pass_tensors_from_frz_model(*tensors) Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms) Compute force and virial.

register(key) Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = /) — Tensor

Build the computational graph for the descriptor.
Parameters

coord
The coordinate of atoms

atype_
The type of atoms

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,

17.1. deepmd package 169

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

pbe is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict
Dictionary for additional inputs

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

compute_input_stats(data coord: list, data_box: list, data_atype: list, natoms vec: list, mesh: list,
input_dict: dict) — None
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make stat_input

data_box
The box. Can be generated by deepmd.model.make stat input

data_atype
The atom types. Can be generated by deepmd.model.make stat_input

natoms_vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make stat input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input
input_dict
Dictionary for additional input
enable_compression(min nbor dist: float, graph: Graph, graph def: GraphDef, table extrapolate:

float = 5.0, table_stride_1: float = 0.01, table_stride 2: float = 0.1,
check frequency: int = -1, suffix: str =) — None

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.
Parameters

min_nbor_dist
[float] The nearest distance between atoms

graph

[tf.Graph] The graph of the model
graph_def

[tf.GraphDef] The graph_def of the model

table_extrapolate
[float, default: 5.] The scale of model extrapolation

170 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/functions.html#float

DeePMD-kit

table_stride 1

[float, default: 0.01] The uniform stride of the first table
table stride 2

[float, default: 0.1] The uniform stride of the second table

check frequency
[int, default: -1] The overflow check frequency

suffix
[str, optional] The suffix of the scope

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.

Parameters
mixed prec
The mixed precision setting used in the embedding net

get_dim_out () — int

Returns the output dimension of this descriptor.
get_nlist () — Tuple[Tensor, Tensor, List[int], List[int]]

Get the neighbor information of the descriptor, returns the nlist of the descriptor with the largest
cut-off radius.

Returns

nlist
Neighbor list

rij
The relative distance between the neighbor and the center atom.

sel_a
The number of neighbors with full information

Selfie number of neighbors with only radial information
get_nlist_i(ii: int) — Tuple[Tensor, Tensor, List[int], List[int]]
Get the neighbor information of the ii-th descriptor.
Parameters
ii
[int] The index of the descriptor

Returns

nlist
Neighbor list
rij
The relative distance between the neighbor and the center atom.
sel_a
The number of neighbors with full information
sel_r
The number of neighbors with only radial information

17.1. deepmd package 171

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

get_ntypes() — int

Returns the number of atom types.
get_rcut () — float

Returns the cut-off radius.
get_tensor_names (suffix: str ="") — Tuple[str]

Get names of tensors.

Parameters

suffix
[str] The suffix of the scope

Returns
Tuple[str]
Names of tensors
init_variables (graph: Graph, graph_def: GraphDef, suffix: str = /) — None
Init the embedding net variables with the given dict.
Parameters
graph
[tf.Graph] The input frozen model graph

graph def
[tf.GraphDef] The input frozen model graph_def

suffix
[str, optional] The suffix of the scope

merge_input_stats (stat_dict)
Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.
Parameters
stat_dict
The dict of statisitcs computed from compute_input_stats, including:
sumr
The sum of radial statisitcs.

suma
The sum of relative coord statisites.

sumn
The sum of neighbor numbers.

sumr2
The sum of square of radial statisitcs.

suma2
The sum of square of relative coord statisitcs.

pass_tensors_from_frz_model (*tensors: Tensor) — None
Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

Parameters

172 Chapter 17. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

DeePMD-kit

*tensors
[tf.Tensor] passed tensors

prod_force_virial(atom ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]

Compute force and virial.
Parameters

atom_ener
The atomic energy

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

Returns

force

The force on atoms
virial

The total virial

atom_virial
The atomic virial

class deepmd.descriptor.DescrptLocFrame (*args, **kwargs)

Bases: Descriptor

Defines a local frame at each atom, and the compute the descriptor as local coordinates under this
frame.

Parameters

rcut
The cut-off radius

sel a
[1ist[str]] The length of the list should be the same as the number of atom types in
the system. sel a[i] gives the selected number of type-i neighbors. The full relative
coordinates of the neighbors are used by the descriptor.

sel r
[1ist[str]] The length of the list should be the same as the number of atom types in
the system. sel r[i] gives the selected number of type-i neighbors. Only relative dis-
tance of the neighbors are used by the descriptor. sel _a[i] + sel r[i] is recommended
to be larger than the maximally possible number of type-i neighbors in the cut-off
radius.

axis_rule: list[int]
The length should be 6 times of the number of types. - axis rule[i*6+0]: class of
the atom defining the first axis of type-i atom. 0 for neighbors with full coordinates
and 1 for neighbors only with relative distance. - axis rule[i*6+1]: type of the atom
defining the first axis of type-i atom. - axis rule[i*6+2]: index of the axis atom
defining the first axis. Note that the neighbors with the same class and type are sorted
according to their relative distance. - axis_rule[i*6+3]: class of the atom defining the
second axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors
only with relative distance. - axis_rule[i*6+4]: type of the atom defining the second
axis of type-i atom. - axis rule[i*6+5]: index of the axis atom defining the second

17.1. deepmd package 173

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

axis. Note that the neighbors with the same class and type are sorted according to

their relative distance.

Methods

build(coord_, atype , natoms, box_, mesh, ...)

build_type_exclude_mask(exclude types, ...)
compute_input_stats(data_coord, data_ box,

)

enable_compression(min_nbor_dist, graph, ...)

enable_mixed_precision([mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)
get_nlist()

get_ntypes()

get_rcut()

get_rot_mat()

get_tensor_names([suffix])
init_variables(graph, graph def[, suffix])

pass_tensors_from_frz_model(*tensors)

prod_force_virial(atom_ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max_nbor_size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed dict for current descriptor.

Returns

Returns the number of atom types.

Returns the cut-off radius.

Get rotational matrix.

Get names of tensors.

Init the embedding net variables with the given
dict.

Pass the descrpt_reshape tensor as well as de-
scrpt,_deriv tensor from the frz graph_def.
Compute force and virial.

Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = "/) — Tensor

Build the computational graph for the descriptor.

Parameters

coord
The coordinate of atoms

atype
The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh

For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbc is assumed. if size of mesh == 0, no-pbc is assumed.

174

Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

input_dict
Dictionary for additional inputs

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

compute_input_stats(data coord: list, data box: list, data_atype: list, natoms_vec: list, mesh: list,
input_dict: dict) — None

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make stat input

data_box
The box. Can be generated by deepmd.model.make_stat_input

data_atype
The atom types. Can be generated by deepmd.model.make stat_input

natoms vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make_stat_input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input

input_dict
Dictionary for additional input

get_dim_out () — int
Returns the output dimension of this descriptor.

get_nlist () — Tuple[Tensor, Tensor, List[int], List[int]]
Returns

nlist
Neighbor list

rij
The relative distance between the neighbor and the center atom.

sel_a
The number of neighbors with full information

sel_r
The number of neighbors with only radial information

get_ntypes() — int
Returns the number of atom types.

17.1. deepmd package 175

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

get_rcut () — float
Returns the cut-off radius.
get_rot_mat () — Tensor
Get rotational matrix.
init_variables(graph: Graph, graph_def: GraphDef, suffix: str =) — None
Init the embedding net variables with the given dict.
Parameters
graph
[tf.Graph] The input frozen model graph
graph_def
[tf.GraphDef] The input frozen model graph_def

suffix
[str, optional] The suffix of the scope
prod_force_virial(atom_ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]

Compute force and virial.
Parameters

atom_ener
The atomic energy

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

Returns

force
The force on atoms

virial
The total virial

atom_virial
The atomic virial

class deepmd.descriptor.DescrptSeA(*args, **kwargs)
Bases: DescrptSe

DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The
embedding takes the distance between atoms as input.

The descriptor D? € RM1*Mz ig given by [1]
where R? € RY*4 is the coordinate matrix, and each row of R’ can be constructed as follows
5(rj:)
5(rji)Tji
(R)j =1 strsiusi |
Tji

s(rji)zji

Tji

176 Chapter 17. Python API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple

DeePMD-kit

whereRj; = R; —R; = (i, Y, 2j:) is the relative coordinate and rj; = ||R;;|| is its norm. The switching
function s(r) is defined as:

1

) r<rg
s(r) = § H{(£=e) (—6(222)" + 15222 —10) +1}, o <7 <70
0, r>Tr.

Each row of the embedding matrix G € RY¥*M:1 consists of outputs of a embedding network N of
s(rji):

(G"); = N(s(rj))

GL € RN*Mz takes first My columns of G'. The equation of embedding network A can be found at
deepmd.utils.network. embedding net ().

Parameters

rcut
The cut-off radius r.

rcut_smth
From where the environment matrix should be smoothed r,

sel
[1ist[str]] sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net A/

axis_neuron
Number of the axis neuron M, (number of columns of the sub-matrix of the embed-
ding matrix)

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

type_one_side
Try to build N_types embedding nets. Otherwise, building N types*2 embedding
nets

exclude_types
[List[List[int]]] The excluded pairs of types which have no interaction with each
other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg zero
Set the shift of embedding net input to zero.

activation_function
The activation function in the embedding net. Supported options are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
The precision of the embedding net parameters. Supported options are “default”,
“float16”, “float32”, “float64”, “bfloat16”.

17.1. deepmd package 177

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using

the random seed

multi_task

If the model has multi fitting nets to train.

References

(1]
Attributes

precision
Precision of filter network.

Methods

build(coord_, atype , natoms, box , mesh, ...)

build_type_exclude_mask(exclude types, ...)
compute_input_stats(data_coord, data_box,

)

enable_compression(min_nbor_dist, graph, ...)

enable_mized_precision((mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_rot_mat()

get_tensor_names([suffix])
init_variables(graph, graph_def[, suffix])

merge_input_stats(stat_dict)

pass_tensors_from_frz_model(descrpt_reshape

)
prod_force_virial(atom ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max_nbor_size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cut-off radius.

Get rotational matrix.

Get names of tensors.

Init the embedding net variables with the given
dict.

Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self.dstd.

Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph_def.
Compute force and virial.

Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = ") — Tensor

Build the computational graph for the descriptor.

Parameters

Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

coord_
The coordinate of atoms

atype_
The type of atoms

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list,
input_dict: dict) — None

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make stat input

data_box
The box. Can be generated by deepmd.model.make_stat_input

data_atype
The atom types. Can be generated by deepmd.model.make stat_input

natoms_vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make_stat_input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make stat_input

input_dict
Dictionary for additional input

enable_compression(min_nbor dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate:
float = 5, table stride 1: float = 0.01, table stride 2: float = 0.1,
check frequency: int = -1, suffix: str ="") — None

17.1. deepmd package 179

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

DeePMD-kit

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.
Parameters

min_nbor_dist
The nearest distance between atoms

graph
[tf.Graph] The graph of the model

graph_def
[tf.GraphDef] The graph_def of the model

table_extrapolate
The scale of model extrapolation

table_stride 1
The uniform stride of the first table

table_stride 2
The uniform stride of the second table

check frequency
The overflow check frequency

suffix
[str, optional] The suffix of the scope

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.
Parameters

mixed prec
The mixed precision setting used in the embedding net

get_dim_out () — int

Returns the output dimension of this descriptor.
get_dim_rot_mat_1() — int

Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3.
get_nlist () — Tuple[Tensor, Tensor, List[int], List[int]]

Returns neighbor information.

Returns

nlist
Neighbor list
rij
The relative distance between the neighbor and the center atom.
sel_a
The number of neighbors with full information
sel_r
The number of neighbors with only radial information
get_ntypes() — int

Returns the number of atom types.

180 Chapter 17. Python API

https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

get_rcut () — float
Returns the cut-off radius.
get_rot_mat () — Tensor
Get rotational matrix.
init_variables(graph: Graph, graph_def: GraphDef, suffix: str =) — None
Init the embedding net variables with the given dict.
Parameters
graph
[tf.Graph] The input frozen model graph

graph_def
[tf.GraphDef] The input frozen model graph_def

suffix
[str, optional] The suffix of the scope

merge_input_stats(stat_dict)
Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.
Parameters

stat_dict

The dict of statisitcs computed from compute _input_stats, including:
sumr
The sum of radial statisitcs.

suma
The sum of relative coord statisitcs.

sumn
The sum of neighbor numbers.

sumr2
The sum of square of radial statisitcs.

suma?2
The sum of square of relative coord statisitcs.

prod_force_virial (atom_ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]
Compute force and virial.

Parameters

atom_ener
The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

Returns

force
The force on atoms

17.1. deepmd package 181

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple

DeePMD-kit

virial
The total virial
atom_virial
The atomic virial
class deepmd.descriptor.DescrptSeAEbd (*args, **kwargs)
Bases: DescrptSed

DeepPot-SE descriptor with type embedding approach.
Parameters

rcut
The cut-off radius

rcut_smth
From where the environment matrix should be smoothed

sel
[list[str]]sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net

axis_neuron
Number of the axis neuron (number of columns of the sub-matrix of the embedding
matrix)

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

type_one_side
Try to build N types embedding nets. Otherwise, building N types™2 embedding
nets

type_nchanl
Number of channels for type representation

type_nlayer
Number of hidden layers for the type embedding net (skip connected).

numb_aparam
Number of atomic parameters. If >0 it will be embedded with atom types.

set_davg zero
Set the shift of embedding net input to zero.

activation_function
The activation function in the embedding net. Supported options are {0}

precision
The precision of the embedding net parameters. Supported options are {1}

exclude types
[List[List[int]]] The excluded pairs of types which have no interaction with each
other. For example, [[0, 1]] means no interaction between type 0 and type 1.

182 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

Attributes

precision
Precision of filter network.

Methods

build(coord_, atype , natoms, box_, mesh, ...)

build_type_exclude_mask(exclude types, ...)
compute_input_stats(data _coord, data box,

)

enable_compression(min_nbor_dist, graph, ...)

enable_mixed_precision([mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_rot_mat()

get_tensor_names([suffix])
init_variables(graph, graph_def[, suffix])

merge_input_stats(stat_dict)

pass_tensors_from_frz_model(descrpt reshape

)

prod_force_virial(atom_ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max_nbor size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cut-off radius.

Get rotational matrix.

Get names of tensors.

Init the embedding net variables with the given
dict.

Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self.dstd.

Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph_def.
Compute force and virial.

Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box _: Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = ") — Tensor

Build the computational graph for the descriptor.

Parameters

coord
The coordinate of atoms

atype_
The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

17.1. deepmd package

183

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

class deepmd.descriptor.DescrptSeAEf (*args, **kwargs)

Bases: Descriptor

Smooth

edition descriptor with Ef.

Parameters

rcut
The cut-off radius

rcut_smth
From where the environment matrix should be smoothed

sel
[1list[str]] sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net

axis_neuron
Number of the axis neuron (number of columns of the sub-matrix of the embedding
matrix)

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

type_one_side
Try to build N_types embedding nets. Otherwise, building N_types*2 embedding
nets

exclude_types
[List[List[int]]] The excluded pairs of types which have no interaction with each
other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg zero
Set the shift of embedding net input to zero.

activation_ function
The activation function in the embedding net. Supported options are “relu”, “relu6”,

W o

“softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

184

Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

precision

The precision of the embedding net parameters. Supported options are “default”,
“float16”, “float32”, “float64”, “bfloat16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using

the random seed

Methods

butld(coord_, atype , natoms, box_ , mesh, ...)

build_type_exclude_mask(exclude types, ...)
compute_input_stats(data_coord, data_box,

o)

enable_compression(min_nbor dist, graph, ...)

enable_mixed_precision([mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_rot_mat()

get_tensor_names([suffix])
init_variables(graph, graph_def[, suffix])

pass_tensors_from_frz_model(*tensors)

prod_force_virial(atom_ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max nbor_size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed_dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cut-off radius.

Get rotational matrix.

Get names of tensors.

Init the embedding net variables with the given
dict.

Pass the descrpt_reshape tensor as well as de-
scrpt,_deriv tensor from the frz graph_def.
Compute force and virial.

Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box _: Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = ") — Tensor

Build the computational graph for the descriptor.

Parameters

coord
The coordinate of atoms

atype_
The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

17.1. deepmd package 185

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs. Should have ‘efield’.

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list,
input_dict: dict) — None

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters
data_coord
The coordinates. Can be generated by deepmd.model.make_stat_input

data_box
The box. Can be generated by deepmd.model.make stat_input

data_atype
The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec

The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make stat_input

mesh

The mesh for mneighbor searching. Can be generated by
deepmd.model.make_stat_input

input_dict
Dictionary for additional input

get_dim_out () — int
Returns the output dimension of this descriptor.
get_dim_rot_mat_1() — int
Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3.
get_nlist () — Tuple[Tensor, Tensor, List[int], List[int]]
Returns neighbor information.
Returns

nlist
Neighbor list
rij
The relative distance between the neighbor and the center atom.

186 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

sel_a
The number of neighbors with full information

sel_r
The number of neighbors with only radial information

get_ntypes() — int
Returns the number of atom types.
get_rcut () — float
Returns the cut-off radius.
get_rot_mat () — Tensor
Get rotational matrix.
prod_force_virial(atom ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]
Compute force and virial.

Parameters

atom_ener
The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

Returns

force
The force on atoms

virial
The total virial

atom_virial
The atomic virial

class deepmd.descriptor.DescrptSeAEfLower (*args, **kwargs)

Bases: DescrptSed
Helper class for implementing DescrptSeAEf.
Attributes

precision
Precision of filter network.

17.1. deepmd package 187

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple

DeePMD-kit

Methods

build(coord_, atype , natoms, box_, mesh, ...)

build_type_exclude_mask(exclude types, ...)
compute_input_stats(data coord, data box,

)

enable_compression(min_nbor_dist, graph, ...)

enable_mixed_precision([mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_rot_mat()

get_tensor_names([suffix])
init_variables(graph, graph_def[, suffix])

merge_input_stats(stat_dict)

pass_tensors_from_frz_model(descrpt reshape

..
prod_force_virial(atom_ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max nbor size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed_dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cut-off radius.

Get rotational matrix.

Get names of tensors.

Init the embedding net variables with the given
dict.

Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self.dstd.

Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph_def.
Compute force and virial.

Register a descriptor plugin.

build(coord , atype , natoms, box_, mesh, input_dict, suffix="', reuse=None)

Build the computational graph for the descriptor.

Parameters

coord
The coordinate of atoms

atype_
The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbe is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

188

Chapter 17. Python API

https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor
compute_input_stats(data_coord, data_box, data_atype, natoms_vec, mesh, input_dict)
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.
Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make_stat_input

data_box
The box. Can be generated by deepmd.model.make stat input

data_atype
The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make stat_input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input

input_dict
Dictionary for additional input
class deepmd.descriptor.DescrptSeAMask (*args, **kwargs)
Bases: DescrptSed

DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The
embedding takes the distance between atoms as input.

The descriptor D? € RM1*Mz i given by [1]
Di —_ (gz)T72'L(72'L)TgZ<
where R? € RV*4 is the coordinate matrix, and each row of R? can be constructed as follows

s(ri)
s(rji)aji

(Ri)j = S(T?i:;yji]

S(Tjjﬁzji
Tji
whereR;; = R; —R; = (xji,Yji, zji) is the relative coordinate and r;; = ||R;|| isits norm. The switching
function s(r) is defined as:

1

= r<rg
_ 3 _ 2 _
s(r) = H{(EE=) (—6(F)" + 157 —10) + 1}, ry<r <7,
0, >

17.1. deepmd package 189

DeePMD-kit

Each row of the embedding matrix G € RY*M:1 consists of outputs of a embedding network N of
s(rji):
(G%); = N(s(rj1))

G € RNXMz takes first My columns of G'. The equation of embedding network A can be found at
deepmd.utils.network. embedding_net (). Specially for descriptor se_a_mask is a concise implemen-
tation of se_a. The difference is that se_a_mask only considered a non-pbc system. And accept a mask
matrix to indicate the atom i in frame j is a real atom or not. (1 means real atom, 0 means ghost atom)
Thus se_a_mask can accept a variable number of atoms in a frame.

Parameters

sel
[1ist[str]] sel[i] specifies the maxmum number of type i atoms in the neighbor list.

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net A/

axis _neuron
Number of the axis neuron M, (number of columns of the sub-matrix of the embed-
ding matrix)

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

type_one_side
Try to build N_types embedding nets. Otherwise, building N types*2 embedding
nets

exclude_types
[List[List[int]]] The excluded pairs of types which have no interaction with each
other. For example, [[0, 1]] means no interaction between type 0 and type 1.

activation_function
The activation function in the embedding net. Supported options are {0}

precision
The precision of the embedding net parameters. Supported options are {1}

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

References
.. [1] Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E.

Weinan. 2018.
End-to-end symmetry preserving inter-atomic potential energy model for finite and

extended systems. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (NIPS’18). Curran Associates Inc., Red Hook, NY,
USA, 4441-4451.

Attributes

precision
Precision of filter network.

Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

Methods

build(coord_, atype , natoms, box_, mesh, ...) Build the computational graph for the descrip-
tor.

build_type_exclude_mask(exclude types, ...) Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, Compute the statisitcs (avg and std) of the train-

) ing data.

enable_compression(min nbor dist, graph,..) Reveive the statisitcs (distance, max nbor size
and env_mat_range) of the training data.

enable_mixed_precision([mixed prec]) Reveive the mixed precision setting.

get_dim_out() Returns the output dimension of this descriptor.

get_dim_rot_mat_1() Returns the first dimension of the rotation ma-
trix.

get_feed_dict(coord , atype , natoms, box, Generate the feed dict for current descriptor.

mesh)

get_nlist() Returns neighbor information.

get_ntypes() Returns the number of atom types.

get_rcut() Returns the cutoff radius.

get_rot_mat() Get rotational matrix.

get_tensor_names([suffix]) Get names of tensors.

init_variables(graph, graph_def[, suffix]) Init the embedding net variables with the given
dict.

merge_input_stats(stat_dict) Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self .dstd.

pass_tensors_from_frz_model(descrpt reshape Pass the descrpt reshape tensor as well as de-

) scrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms) Compute force and virial.

register(key) Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict:
Dict[str, Any], reuse: bool | None = None, suffix: str =) — Tensor

Build the computational graph for the descriptor.
Parameters

coord
The coordinate of atoms

atype_
The type of atoms

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbe is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

17.1. deepmd package 191

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list,
input_dict: dict) — None
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make_stat_input

data_box
The box. Can be generated by deepmd.model.make stat input

data_atype
The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make stat_input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input

input_dict
Dictionary for additional input

get_rcut () — float
Returns the cutoff radius.

prod_force_virial(atom ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]

Compute force and virial.
Parameters

atom_ener
The atomic energy

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

Returns

force

The force on atoms
virial

None for se_a_mask op

192 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple

DeePMD-kit

atom_virial
None for se_a_mask op

class deepmd.descriptor.DescrptSeAtten(*args, **kwargs)
Bases: DescrptSed

Smooth version descriptor with attention.
Parameters

rcut
The cut-off radius r.

rcut_smth
From where the environment matrix should be smoothed r,

sel
[1ist[str]] sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net A/

axis neuron
Number of the axis neuron M, (number of columns of the sub-matrix of the embed-
ding matrix)

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

type_one side
Try to build N_types embedding nets. Otherwise, building N types*2 embedding
nets

exclude_types
[List[List[int]]] The excluded pairs of types which have no interaction with each
other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg zero
Set the shift of embedding net input to zero.

activation_function
The activation function in the embedding net. Supported options are “relu”, “relu6”,

SR AN

“softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
The precision of the embedding net parameters. Supported options are “default”,
“float16”, “float32”, “float64”, “bfloat16”.

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

attn
The length of hidden vector during scale-dot attention computation.

attn_layer
The number of layers in attention mechanism.

17.1. deepmd package 193

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

attn_dotr
Whether to dot the relative coordinates on the attention weights as a gated scheme.

attn_mask
Whether to mask the diagonal in the attention weights.

multi_task
If the model has multi fitting nets to train.

Attributes

precision
Precision of filter network.

Methods

build(coord , atype , natoms, box_, mesh, ...) Build the computational graph for the descrip-

tor.
build_type_exzclude_mask(exclude types, ...) Build the type exclude mask for the attention de-
scriptor.
compute_input_stats(data_coord, data_box, Compute the statisitcs (avg and std) of the train-
) ing data.

enable_compression(min nbor dist, graph,...) Reveive the statisitcs (distance, max nbor size
and env_mat_range) of the training data.

enable_mixed_precision([mixed prec]) Reveive the mixed precision setting.

get_dim_out() Returns the output dimension of this descriptor.

get_dim_rot_mat_1() Returns the first dimension of the rotation ma-
trix.

get_feed_dict(coord , atype , natoms, box, Generate the feed dict for current descriptor.

mesh)

get_nlist() Returns neighbor information.

get_ntypes() Returns the number of atom types.

get_rcut() Returns the cut-off radius.

get_rot_mat() Get rotational matrix.

get_tensor_names([suffix]) Get names of tensors.

init_variables(graph, graph_def[, suffix]) Init the embedding net variables with the given
dict.

merge_input_stats(stat_dict) Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self.dstd.

pass_tensors_from_frz_model(descrpt_reshape Pass the descrpt _reshape tensor as well as de-

) scrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms) Compute force and virial.

register(key) Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = /) — Tensor

Build the computational graph for the descriptor.
Parameters

coord
The coordinate of atoms

194 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

atype_
The type of atoms

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

build_type_exclude_mask(exclude types: List[Tuple[int, int]], ntypes: int, sel: List[int], ndescrpt:
int, atype: Tensor, shapeQ: Tensor, nei_type_vec: Tensor) — Tensor

Build the type exclude mask for the attention descriptor.
Parameters

exclude types
[List[Tuplelint, int]]] The list of excluded types, e.g. [(0, 1), (1, 0)] means the
interaction between type 0 and type 1 is excluded.

ntypes
[int] The number of types.

sel
[List[int]] The list of the number of selected neighbors for each type.

ndescrpt
[int] The number of descriptors for each atom.

atype
[tf.Tensor] The type of atoms, with the size of shape0.

shape0
[tf.Tensor] The shape of the first dimension of the inputs, which is equal to nsam-
ples * natoms.

nei_type vec
[tf.Tensor] The type of neighbors, with the size of (shape0, nnei).

Returns

tf.Tensor
The type exclude mask, with the shape of (shape0, ndescrpt), and the precision of

17.1. deepmd package 195

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

GLOBAL_TF_FLOAT_PRECISION. The mask has the value of 1 if the interaction
between two types is not excluded, and 0 otherwise.

See also:

deepmd.descriptor.descriptor.Descriptor.build_type_exclude_mask

Notes

This method has the similiar way to build the type exclude mask as deepmd.descriptor.
descriptor.Descriptor.build_type_ezclude_mask(). The mathmatical expression has been
explained in that method. The difference is that the attention descriptor has provided the type of
the neighbors (idx_j) that is not in order, so we use it from an extra input.

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms vec: list, mesh: list,
input_dict: dict, mixed_type: bool = False, real natoms_vec: list | None =
None) — None
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.
Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make_stat_input

data_box
The box. Can be generated by deepmd.model.make stat input

data_atype
The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec
The vector for the number of atoms of the system and different types of atoms. If
mixed type is True, this para is blank. See real natoms_vec.

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input

input_dict
Dictionary for additional input

mixed type
Whether to perform the mixed type mode. If True, the input data has the
mixed_type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

real natoms_vec
If mixed type is True, it takes in the real natoms_vec for each frame.

init_variables (graph: Graph, graph_def: GraphDef, suffix: str = /) — None
Init the embedding net variables with the given dict.

Parameters

graph
[tf.Graph] The input frozen model graph

graph def
[tf.GraphDef] The input frozen model graph_def

196 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph

DeePMD-kit

suffix
[str, optional] The suffix of the scope

class deepmd.descriptor.DescrptSeR (*args, **kwargs)
Bases: DescrptSe

DeepPot-SE constructed from radial information of atomic configurations.
The embedding takes the distance between atoms as input.
Parameters

rcut
The cut-off radius

rcut_smth
From where the environment matrix should be smoothed

sel
[1list[str]] sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

type_one_side
Try to build N types embedding nets. Otherwise, building N types™2 embedding
nets

exclude types
[List[List[int]]] The excluded pairs of types which have no interaction with each
other. For example, [[0, 1]] means no interaction between type 0 and type 1.

activation_function
The activation function in the embedding net. Supported options are “relu”, “relu6”,

RN MW

“softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
The precision of the embedding net parameters. Supported options are “default”,
“float16”, “float32”, “float64”, “bfloatl16”.

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

Attributes

precision
Precision of filter network.

17.1. deepmd package 197

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

Methods

build(coord_, atype , natoms, box_, mesh, ...) Build the computational graph for the descrip-

tor.

build_type_exclude_mask(exclude types, ...) Build the type exclude mask for the descriptor.
compute_input_stats(data_coord, data_box, Compute the statisitcs (avg and std) of the train-

)

ing data.

enable_compression(min nbor dist, graph,...) Reveive the statisitcs (distance, max nbor size

and env_mat_range) of the training data.

enable_mixed_precision([mixed prec]) Reveive the mixed precision setting.

get_dim_out() Returns the output dimension of this descriptor.

get_dim_rot_mat_1() Returns the first dimension of the rotation ma-
trix.

get_feed_dict(coord , atype , natoms, box, Generate the feed dict for current descriptor.

mesh)

get_nlist() Returns neighbor information.

get_ntypes() Returns the number of atom types.

get_rcut() Returns the cut-off radius.

get_tensor_names([suffix]) Get names of tensors.

init_variables(graph, graph_def[, suffix]) Init the embedding net variables with the given
dict.

merge_input_stats(stat_dict) Merge the statisitcs computed from com-

pute_input_stats to obtain the self.davg and
self.dstd.

pass_tensors_from_frz_model(descrpt reshape Pass the descrpt reshape tensor as well as de-

) scrpt_deriv tensor from the frz graph def.
prod_force_virial(atom_ener, natoms) Compute force and virial.
register(key) Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,

reuse: bool | None = None, suffix: str = ") — Tensor

Build the computational graph for the descriptor.

Parameters

coord
The coordinate of atoms

atype_
The type of atoms

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbe is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

198

Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor
compute_input_stats(data_coord, data_box, data_atype, natoms_vec, mesh, input_dict)
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.
Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make_stat_input

data_box
The box. Can be generated by deepmd.model.make stat input

data_atype
The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make stat_input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input
input_dict
Dictionary for additional input
enable_compression(min nbor dist: float, graph: Graph, graph def: GraphDef, table extrapolate:
float = 5, table_stride 1: float = 0.01, table stride 2: float = 0.1,
check frequency: int = -1, suffix: str =) — None

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.
Parameters

min_nbor_dist

The nearest distance between atoms
graph

[tf.Graph] The graph of the model
graph_def

[tf.GraphDef] The graph_def of the model

table_extrapolate
The scale of model extrapolation

table_stride 1
The uniform stride of the first table

table stride 2
The uniform stride of the second table

17.1. deepmd package 199

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph

DeePMD-kit

check frequency
The overflow check frequency

suffix
[str, optional] The suffix of the scope
get_dim_out ()
Returns the output dimension of this descriptor.
get_nlist()
Returns neighbor information.

Returns

nlist
Neighbor list
rij
The relative distance between the neighbor and the center atom.
sel_a
The number of neighbors with full information
sel_r
The number of neighbors with only radial information
get_ntypes()
Returns the number of atom types.
get_rcut ()
Returns the cut-off radius.
merge_input_stats (stat_dict)
Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

Parameters
stat_dict
The dict of statisitcs computed from compute_input_stats, including:
sumr

The sum of radial statisitcs.

sumn
The sum of neighbor numbers.

sumr2
The sum of square of radial statisitcs.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]
Compute force and virial.

Parameters

atom_ener
The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

200 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple

DeePMD-kit

Returns

force
The force on atoms

virial
The total virial

atom_virial
The atomic virial

class deepmd.descriptor.DescrptSeT (*args, **kwargs)
Bases: DescrptSe

DeepPot-SE constructed from all information (both angular and radial) of atomic configurations.
The embedding takes angles between two neighboring atoms as input.
Parameters

rcut
The cut-off radius

rcut_smth
From where the environment matrix should be smoothed

sel
[list[str]]sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

set_davg zero
Set the shift of embedding net input to zero.

activation_function
The activation function in the embedding net. Supported options are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
The precision of the embedding net parameters. Supported options are “default”,
“float16”, “float32”, “float64”, “bfloat16”.

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

Attributes

precision
Precision of filter network.

17.1. deepmd package 201

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

Methods

build(coord_, atype , natoms, box_, mesh, ...) Build the computational graph for the descrip-

tor.

build_type_exclude_mask(exclude types, ...) Build the type exclude mask for the descriptor.
compute_input_stats(data_coord, data_box, Compute the statisitcs (avg and std) of the train-

)

ing data.

enable_compression(min nbor dist, graph,...) Reveive the statisitcs (distance, max nbor size

and env_mat_range) of the training data.

enable_mixed_precision([mixed prec]) Reveive the mixed precision setting.

get_dim_out() Returns the output dimension of this descriptor.

get_dim_rot_mat_1() Returns the first dimension of the rotation ma-
trix.

get_feed_dict(coord , atype , natoms, box, Generate the feed dict for current descriptor.

mesh)

get_nlist() Returns neighbor information.

get_ntypes() Returns the number of atom types.

get_rcut() Returns the cut-off radius.

get_tensor_names([suffix]) Get names of tensors.

init_variables(graph, graph_def[, suffix]) Init the embedding net variables with the given
dict.

merge_input_stats(stat_dict) Merge the statisitcs computed from com-

pute_input_stats to obtain the self.davg and
self.dstd.

pass_tensors_from_frz_model(descrpt reshape Pass the descrpt reshape tensor as well as de-

) scrpt_deriv tensor from the frz graph def.
prod_force_virial(atom_ener, natoms) Compute force and virial.
register(key) Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,

reuse: bool | None = None, suffix: str = ") — Tensor

Build the computational graph for the descriptor.

Parameters

coord
The coordinate of atoms

atype_
The type of atoms

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbe is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

202

Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list,
input_dict: dict) — None
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.
Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make_stat_input

data_box
The box. Can be generated by deepmd.model.make stat input

data_atype
The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make stat_input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input
input_dict
Dictionary for additional input
enable_compression(min nbor dist: float, graph: Graph, graph def: GraphDef, table extrapolate:

float = 5, table stride 1: float = 0.01, table stride 2: float = 0.1,
check frequency: int = -1, suffix: str =) — None

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.
Parameters

min_nbor_dist

The nearest distance between atoms
graph

[tf.Graph] The graph of the model
graph_def

[tf.GraphDef] The graph_def of the model

table_extrapolate
The scale of model extrapolation

table_stride 1
The uniform stride of the first table

table stride 2
The uniform stride of the second table

17.1. deepmd package 203

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph

DeePMD-kit

check frequency
The overflow check frequency

suffix
[str, optional] The suffix of the scope

get_dim_out () — int
Returns the output dimension of this descriptor.
get_nlist () — Tuple[Tensor, Tensor, List[int], List[int]]
Returns neighbor information.

Returns

nlist
Neighbor list

rij
The relative distance between the neighbor and the center atom.

sel_a
The number of neighbors with full information

sel_r
The number of neighbors with only radial information

get_ntypes() — int
Returns the number of atom types.
get_rcut () — float
Returns the cut-off radius.
merge_input_stats(stat_dict)
Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

Parameters

stat_dict

The dict of statisitcs computed from compute input_stats, including:
sumr
The sum of radial statisitcs.

suma
The sum of relative coord statisitcs.

sumn
The sum of neighbor numbers.

sumr2
The sum of square of radial statisitcs.

suma?2
The sum of square of relative coord statisitcs.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]
Compute force and virial.
Parameters

atom_ener
The atomic energy

204 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple

DeePMD-kit

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

Returns

force
The force on atoms

virial
The total virial

atom_virial
The atomic virial

Submodules
deepmd.descriptor.descriptor module

class deepmd.descriptor.descriptor.Descriptor (*args, **kwargs)

Bases: PluginVariant
The abstract class for descriptors. All specific descriptors should be based on this class.

The descriptor D describes the environment of an atom, which should be a function of coordinates and
types of its neighbour atoms.

Notes

Only methods and attributes defined in this class are generally public, that can be called by other classes.

Examples

>>> descript = Descriptor(type="se_e2_a", rcut=6., rcut_smth=0.5, sel=[50])
>>> type(descript)
<class 'deepmd.descriptor.se_a.DescrptSeA'>

17.1. deepmd package 205

DeePMD-kit

Methods

build(coord_, atype , natoms, box_, mesh, ...)

build_type_ezclude_mask(exclude types, ...)
compute_input_stats(data coord, data box,

)

enable_compression(min_nbor_dist, graph, ...)

enable_mized_precision((mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_tensor_names([suffix])
init_variables(graph, graph def[, suffix])

pass_tensors_from_frz_model(*tensors)

prod_force_virial(atom_ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max nbor size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed_dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cut-off radius.

Get names of tensors.

Init the embedding net variables with the given
dict.

Pass the descrpt_reshape tensor as well as de-
scrpt,_deriv tensor from the frz graph_def.
Compute force and virial.

Register a descriptor plugin.

abstract build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor,
input_dict: Dict[str, Any], reuse: bool | None = None, suffix: str = ") — Tensor

Build the computational graph for the descriptor.

Parameters

coord_

[tf.Tensor] The coordinate of atoms

atype
[tf.Tensor] The type of atoms

natoms

[tf.Tensor] The number of atoms. This tensor has the length of Ntypes + 2
natoms[0]: number of local atoms natoms[1]: total number of atoms held by this
processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of frames

mesh
[tf.Tensor] For historical reasons, only the length of the Tensor matters. if size of
mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

[dict[str, Any]] Dictionary for additional inputs

reuse

[bool, optional] The weights in the networks should be reused when get the vari-

able.

206

Chapter 17. Python API

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

DeePMD-kit

suffix
[str, optional] Name suffix to identify this descriptor

Returns

descriptor: tf.Tensor
The output descriptor

Notes

This method must be implemented, as it’s called by other classes.
build_type_exclude_mask (exclude types: List[Tuple[int, int]], ntypes: int, sel: List[int], ndescrpt:
int, atype: Tensor, shape0: Tensor) — Tensor

Build the type exclude mask for the descriptor.
Parameters

exclude types
[List[Tuple[int, int]]] The list of excluded types, e.g. [(0, 1), (1, 0)] means the
interaction between type 0 and type 1 is excluded.

ntypes
[int] The number of types.

sel
[List[int]] The list of the number of selected neighbors for each type.

ndescrpt
[int] The number of descriptors for each atom.

atype
[tf.Tensor] The type of atoms, with the size of shape0.

shape0
[tf.Tensor] The shape of the first dimension of the inputs, which is equal to nsam-
ples * natoms.

Returns

tf.Tensor
The type exclude mask, with the shape of (shape0, ndescrpt), and the precision of
GLOBAL_TF _FLOAT PRECISION. The mask has the value of 1 if the interaction
between two types is not excluded, and 0 otherwise.

Notes

To exclude the interaction between two types, the derivative of energy with respect to distances
(or angles) between two atoms should be zero[Rafclae60e195-1] | i.e.

OFE
Vi € typel,j € type2, — =0
8rij
When embedding networks between every two types are built, we can just remove that network.
But when type_one_side is enabled, a network may be built for multiple pairs of types. In this
case, we need to build a mask to exclude the interaction between two types.

The mask assumes the descriptors are sorted by neighbro type with the fixed number of given sel
and each neighbor has the same number of descriptors (for example 4).

17.1. deepmd package 207

https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

References

(1]

abstract compute_input_stats(data_coord: List[ndarray], data_box: List[ndarray], data_atype:
List[ndarray], natoms_vec: List[ndarray], mesh: List[ndarray],
input_dict: Dict[str, List[ndarray]]) — None
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters

data_coord
[list[np.ndarray]] The coordinates. Can be generated by deepmd.model.
model_stat.make_stat_input ()

data_box
[list[np.ndarray]] The box. Can be generated by deepmd.model.model_stat.
make_stat_input ()

data_atype
[list[np.ndarray]] The atom types. Can be generated by deepmd.model.
model_stat.make_stat_input ()

natoms vec
[list[np.ndarray]] The vector for the number of atoms of the system and
different types of atoms. Can be generated by deepmd.model.model_stat.
make_stat_input ()

mesh
[list[np.ndarray]] The mesh for neighbor searching. Can be generated by
deepmd.model.model_stat.make_stat_input ()

input_dict
[dict[str, list[np.ndarray]]] Dictionary for additional input

Notes

This method must be implemented, as it’s called by other classes.

enable_compression(min_nbor dist: float, graph: Graph, graph def: GraphDef, table_extrapolate:
float = 5.0, table_stride 1: float = 0.01, table_stride 2: float = 0.1,
check frequency: int = -1, suffix: str =) — None

Reveive the statisitcs (distance, max nbor size and env_mat _range) of the training data.
Parameters

min_nbor_dist
[float] The nearest distance between atoms

graph
[tf.Graph] The graph of the model

graph def
[tf.GraphDef] The graph definition of the model

table_extrapolate
[float, default: 5.] The scale of model extrapolation

208 Chapter 17. Python API

https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/functions.html#float

DeePMD-kit

table_stride 1
[float, default: 0.01] The uniform stride of the first table

table stride 2
[float, default: 0.1] The uniform stride of the second table

check frequency
[int, default: -1] The overflow check frequency

suffix
[str, optional] The suffix of the scope

Notes

This method is called by others when the descriptor supported compression.

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.
Parameters

mixed prec
The mixed precision setting used in the embedding net

Notes

This method is called by others when the descriptor supported compression.

abstract get_dim_out() — int
Returns the output dimension of this descriptor.

Returns

int
the output dimension of this descriptor

Notes

This method must be implemented, as it’s called by other classes.

get_dim_rot_mat_1() — int
Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3.
Returns
int
the first dimension of the rotation matrix

get_feed_dict(coord : Tensor, atype : Tensor, natoms: Tensor, box: Tensor, mesh: Tensor) —
Dict[str, Tensor]

Generate the feed dict for current descriptor.
Parameters

coord
[tf.Tensor] The coordinate of atoms

atype_
[tf.Tensor] The type of atoms

17.1. deepmd package 209

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

natoms
[tf.Tensor] The number of atoms. This tensor has the length of Ntypes + 2
natoms[0]: number of local atoms natoms[1]: total number of atoms held by this
processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

box
[tf.Tensor] The box. Can be generated by deepmd.model.make stat_input

mesh
[tf.Tensor] For historical reasons, only the length of the Tensor matters. if size of
mesh == 6, pbc is assumed. if size of mesh == 0, no-pbc is assumed.
Returns
feed dict

[dict[str, tf.Tensor]] The output feed dict of current descriptor

get_nlist () — Tuple[Tensor, Tensor, List[int], List[int]]
Returns neighbor information.

Returns

nlist
[tf.Tensor] Neighbor list

rij
[tf.Tensor] The relative distance between the neighbor and the center atom.

sel a
[1ist[int]] The number of neighbors with full information

sel r
[1ist[int]] The number of neighbors with only radial information

abstract get_ntypes() — int
Returns the number of atom types.

Returns
int
the number of atom types

Notes

This method must be implemented, as it’s called by other classes.

abstract get_rcut() — float
Returns the cut-off radius.

Returns

float
the cut-off radius

210 Chapter 17. Python API

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

DeePMD-kit

Notes
This method must be implemented, as it’s called by other classes.
get_tensor_names (suffix: str = ") — Tuple[str]
Get names of tensors.
Parameters

suffix
[str] The suffix of the scope

Returns

Tuple[str]
Names of tensors

init_variables(graph: Graph, graph_def: GraphDef, suffix: str
Init the embedding net variables with the given dict.

=) — None

Parameters

graph
[tf.Graph] The input frozen model graph

graph_def
[tf.GraphDef] The input frozen model graph_def

suffix
[str, optional] The suffix of the scope

Notes

This method is called by others when the descriptor supported initialization from the given vari-

ables.
pass_tensors_from_frz_model (*tensors: Tensor) — None

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.
Parameters

*tensors
[tf.Tensor] passed tensors

Notes
The number of parameters in the method must be equal to the numbers of returns in

get_tensor_names ().
abstract prod_force_virial(atom_ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor,

Tensor]
Compute force and virial.
Parameters

atom_ener
[tf.Tensor] The atomic energy

211

17.1. deepmd package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.Tuple
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

natoms
[tf.Tensor] The number of atoms. This tensor has the length of Ntypes + 2
natoms[0]: number of local atoms natoms[1]: total number of atoms held by this
processor natoms[i]: 2 <= i < Ntypes+2, number of type i atoms

Returns

force
[tf.Tensor] The force on atoms

virial
[tf.Tensor] The total virial

atom_virial
[tf.Tensor | The atomic virial

static register (key: str) — Descriptor

Register a descriptor plugin.
Parameters

key
[str] the key of a descriptor

Returns

Descriptor
the registered descriptor

Examples

>>> @Descriptor.register("some_descrpt")
class SomeDescript(Descriptor):
pass

deepmd.descriptor.hybrid module

class deepmd.descriptor.hybrid.DescrptHybrid(*args, **kwargs)

Bases: Descriptor
Concate a list of descriptors to form a new descriptor.
Parameters

list
[1ist] Build a descriptor from the concatenation of the list of descriptors.

212 Chapter 17. Python API

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

DeePMD-kit

Methods

build(coord_, atype , natoms, box_, mesh, ...) Build the computational graph for the descrip-
tor.

build_type_exclude_mask(exclude types, ...) Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, Compute the statisitcs (avg and std) of the train-

) ing data.

enable_compression(min nbor dist, graph,...) Reveive the statisitcs (distance, max nbor size
and env_mat_range) of the training data.

enable_mized_precision((mixed prec]) Reveive the mixed precision setting.

get_dim_out() Returns the output dimension of this descriptor.

get_dim_rot_mat_1() Returns the first dimension of the rotation ma-
trix.

get_feed_dict(coord , atype , natoms, box, Generate the feed dict for current descriptor.

mesh)

get_nlist() Get the neighbor information of the descriptor,

returns the nlist of the descriptor with the largest
cut-off radius.

get_nlist_4(ii) Get the neighbor information of theii-th descrip-
tor.

get_ntypes() Returns the number of atom types.

get_rcut() Returns the cut-off radius.

get_tensor_names([suffix]) Get names of tensors.

init_variables(graph, graph_def[, suffix]) Init the embedding net variables with the given
dict.

merge_input_stats(stat_dict) Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self.dstd.

pass_tensors_from_frz_model(*tensors) Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph_def.

prod_force_virial(atom_ener, natoms) Compute force and virial.

register(key) Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = /) — Tensor

Build the computational graph for the descriptor.
Parameters

coord
The coordinate of atoms

atype_
The type of atoms

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,

17.1. deepmd package 213

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

pbe is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict
Dictionary for additional inputs

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

compute_input_stats(data coord: list, data_box: list, data_atype: list, natoms vec: list, mesh: list,
input_dict: dict) — None
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make stat_input

data_box
The box. Can be generated by deepmd.model.make stat input

data_atype
The atom types. Can be generated by deepmd.model.make stat_input

natoms_vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make stat input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input
input_dict
Dictionary for additional input
enable_compression(min nbor dist: float, graph: Graph, graph def: GraphDef, table extrapolate:

float = 5.0, table_stride_1: float = 0.01, table_stride 2: float = 0.1,
check frequency: int = -1, suffix: str =) — None

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.
Parameters

min_nbor_dist
[float] The nearest distance between atoms

graph

[tf.Graph] The graph of the model
graph_def

[tf.GraphDef] The graph_def of the model

table_extrapolate
[float, default: 5.] The scale of model extrapolation

214 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/functions.html#float

DeePMD-kit

table_stride 1

[float, default: 0.01] The uniform stride of the first table
table stride 2

[float, default: 0.1] The uniform stride of the second table

check frequency
[int, default: -1] The overflow check frequency

suffix
[str, optional] The suffix of the scope

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.

Parameters
mixed prec
The mixed precision setting used in the embedding net

get_dim_out () — int

Returns the output dimension of this descriptor.
get_nlist () — Tuple[Tensor, Tensor, List[int], List[int]]

Get the neighbor information of the descriptor, returns the nlist of the descriptor with the largest
cut-off radius.

Returns

nlist
Neighbor list

rij
The relative distance between the neighbor and the center atom.

sel_a
The number of neighbors with full information

Selfie number of neighbors with only radial information
get_nlist_i(ii: int) — Tuple[Tensor, Tensor, List[int], List[int]]
Get the neighbor information of the ii-th descriptor.
Parameters
ii
[int] The index of the descriptor

Returns

nlist
Neighbor list
rij
The relative distance between the neighbor and the center atom.
sel_a
The number of neighbors with full information
sel_r
The number of neighbors with only radial information

17.1. deepmd package 215

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

get_ntypes() — int

Returns the number of atom types.
get_rcut () — float

Returns the cut-off radius.
get_tensor_names (suffix: str ="") — Tuple[str]

Get names of tensors.

Parameters

suffix
[str] The suffix of the scope

Returns
Tuple[str]
Names of tensors
init_variables (graph: Graph, graph_def: GraphDef, suffix: str = /) — None
Init the embedding net variables with the given dict.
Parameters
graph
[tf.Graph] The input frozen model graph

graph def
[tf.GraphDef] The input frozen model graph_def

suffix
[str, optional] The suffix of the scope

merge_input_stats (stat_dict)
Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.
Parameters
stat_dict
The dict of statisitcs computed from compute_input_stats, including:
sumr
The sum of radial statisitcs.

suma
The sum of relative coord statisites.

sumn
The sum of neighbor numbers.

sumr2
The sum of square of radial statisitcs.

suma2
The sum of square of relative coord statisitcs.

pass_tensors_from_frz_model (*tensors: Tensor) — None
Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.

Parameters

216 Chapter 17. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

DeePMD-kit

*tensors
[tf.Tensor] passed tensors

prod_force_virial(atom ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]

Compute force and virial.
Parameters

atom_ener
The atomic energy

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

Returns

force

The force on atoms
virial

The total virial

atom_virial
The atomic virial

deepmd.descriptor.loc__frame module

class deepmd.descriptor.loc_frame.DescrptLocFrame (*fargs, **kwargs)

Bases: Descriptor

Defines a local frame at each atom, and the compute the descriptor as local coordinates under this
frame.

Parameters

rcut
The cut-off radius

sel a
[1ist[str]] The length of the list should be the same as the number of atom types in
the system. sel a[i] gives the selected number of type-i neighbors. The full relative
coordinates of the neighbors are used by the descriptor.

sel r
[1ist[str]] The length of the list should be the same as the number of atom types in
the system. sel r[i] gives the selected number of type-i neighbors. Only relative dis-
tance of the neighbors are used by the descriptor. sel _a[i] + sel r[i] is recommended
to be larger than the maximally possible number of type-i neighbors in the cut-off
radius.

axis_rule: list[int]
The length should be 6 times of the number of types. - axis rule[i*6+0]: class of
the atom defining the first axis of type-i atom. 0 for neighbors with full coordinates
and 1 for neighbors only with relative distance. - axis_rule[i*6+1]: type of the atom
defining the first axis of type-i atom. - axis rule[i*6+2]: index of the axis atom
defining the first axis. Note that the neighbors with the same class and type are sorted
according to their relative distance. - axis_rule[i*6+3]: class of the atom defining the

17.1. deepmd package 217

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

second axis of type-i atom. 0 for neighbors with full coordinates and 1 for neighbors
only with relative distance. - axis_rule[i*6+4]: type of the atom defining the second
axis of type-i atom. - axis rule[i*6+5]: index of the axis atom defining the second
axis. Note that the neighbors with the same class and type are sorted according to

their relative distance.

Methods

build(coord , atype , natoms, box_, mesh, ...)

build_type_exclude_mask(exclude types, ...)
compute_input_stats(data_coord, data_box,

)

enable_compression(min_nbor_dist, graph, ...)

enable_mixed_precision([mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)
get_nlist()

get_ntypes()

get_rcut()

get_rot_mat()

get_tensor_names([suffix])
init_variables(graph, graph_def[, suffix])

pass_tensors_from_frz_model(*tensors)

prod_force_virial(atom_ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max_nbor_size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed_dict for current descriptor.

Returns

Returns the number of atom types.

Returns the cut-off radius.

Get rotational matrix.

Get names of tensors.

Init the embedding net variables with the given
dict.

Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph def.
Compute force and virial.

Register a descriptor plugin.

build(coord_: Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = "’) — Tensor

Build the computational graph for the descriptor.

Parameters

coord
The coordinate of atoms

atype_
The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

218

Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list,
input_dict: dict) — None

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make stat input

data_box
The box. Can be generated by deepmd.model.make_stat_input

data_atype
The atom types. Can be generated by deepmd.model.make stat_input

natoms vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make_stat_input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input

input_dict
Dictionary for additional input

get_dim_out () — int
Returns the output dimension of this descriptor.

get_nlist () — Tuple[Tensor, Tensor, List[int], List[int]]

Returns

nlist
Neighbor list
rij
The relative distance between the neighbor and the center atom.

sel_a
The number of neighbors with full information

sel_r
The number of neighbors with only radial information

17.1. deepmd package 219

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

get_ntypes() — int
Returns the number of atom types.
get_rcut () — float
Returns the cut-off radius.
get_rot_mat () — Tensor
Get rotational matrix.
init_variables(graph: Graph, graph def: GraphDef, suffix: str = ") — None
Init the embedding net variables with the given dict.
Parameters
graph
[tf.Graph] The input frozen model graph
graph_def
[tf.GraphDef] The input frozen model graph_def
suffix

[str, optional] The suffix of the scope

prod_force_virial(atom_ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]
Compute force and virial.

Parameters

atom_ener
The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

Returns

force
The force on atoms

virial
The total virial

atom_virial
The atomic virial

deepmd.descriptor.se module

class deepmd.descriptor.se.DescrptSe (*args, **kwargs)
Bases: Descriptor

A base class for smooth version of descriptors.

220 Chapter 17. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple

DeePMD-kit

Notes

All of these descriptors have an environmental matrix and an embedding network (deepmd.utils.
network. embedding_net ()), so they can share some similiar methods without defining them twice.

Attributes

embedding net_variables

[dict]initial embedding network variables

descrpt_reshape
[tf.Tensor] the reshaped descriptor

descrpt_deriv

[tf.Tensor] the descriptor derivative

rij
[tf.Tensor] distances between two atoms
nlist
[tf.Tensor] the neighbor list
Methods

build(coord , atype , natoms, box , mesh, ...)

build_type_exclude_mask(exclude types, ...)
compute_input_stats(data_coord, data_ box,

o)

enable_compression(min_nbor dist, graph, ...)

enable_mixed_precision([mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_tensor_names([suffix])
init_variables(graph, graph_def[, suffix])

pass_tensors_from_frz_model(descrpt_reshape

)
prod_force_virial(atom ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max_nbor_size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cut-off radius.

Get names of tensors.

Init the embedding net variables with the given
dict.

Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph_def.
Compute force and virial.

Register a descriptor plugin.

get_tensor_names (suffix: str ="") — Tuple[str]

Get names of tensors.
Parameters

suffix
[str] The suffix of the scope

17.1. deepmd package

221

https://docs.python.org/3/library/stdtypes.html#dict
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

Returns

Tuple[str]
Names of tensors

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = /) — None
Init the embedding net variables with the given dict.

Parameters

graph
[tf.Graph] The input frozen model graph

graph_def
[tf.GraphDef] The input frozen model graph_def

suffix
[str, optional] The suffix of the scope

pass_tensors_from_frz_model(descrpt reshape: Tensor, descrpt_deriv: Tensor, rij: Tensor, nlist:
Tensor)

Pass the descrpt_reshape tensor as well as descrpt_deriv tensor from the frz graph_def.
Parameters

descrpt_reshape
The passed descrpt_reshape tensor

descrpt_deriv
The passed descrpt_deriv tensor

rij
The passed rij tensor

nlist
The passed nlist tensor

property precision: DType
Precision of filter network.

deepmd.descriptor.se_a module

class deepmd.descriptor.se_a.DescrptSeA(*args, **kwargs)
Bases: DescrptSe

DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The
embedding takes the distance between atoms as input.

The descriptor D? € RM1*M:z ig given by [1]
D' = (GTRI(RY)TGL
where R? € RV*4 is the coordinate matrix, and each row of R’ can be constructed as follows
s(r;i)

s(rji)zji

(R =1 stryhusi |
S(Tjjﬁzji

222 Chapter 17. Python API

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

whereRj; = R; —R; = (i, Y, 2j:) is the relative coordinate and rj; = ||R;;|| is its norm. The switching
function s(r) is defined as:

1

) r<rg
s(r) = § H{(£=e) (—6(222)" + 15222 —10) +1}, o <7 <70
0, r>Tr.

Each row of the embedding matrix G € RY¥*M:1 consists of outputs of a embedding network N of
s(rji):

(G"); = N(s(rj))

GL € RN*Mz takes first My columns of G'. The equation of embedding network A can be found at
deepmd.utils.network. embedding net ().

Parameters

rcut
The cut-off radius r.

rcut_smth
From where the environment matrix should be smoothed r,

sel
[1ist[str]] sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net A/

axis_neuron
Number of the axis neuron M, (number of columns of the sub-matrix of the embed-
ding matrix)

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

type_one_side
Try to build N_types embedding nets. Otherwise, building N types*2 embedding
nets

exclude_types
[List[List[int]]] The excluded pairs of types which have no interaction with each
other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg zero
Set the shift of embedding net input to zero.

activation_function
The activation function in the embedding net. Supported options are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
The precision of the embedding net parameters. Supported options are “default”,
“float16”, “float32”, “float64”, “bfloat16”.

17.1. deepmd package 223

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using

the random seed

multi_task

If the model has multi fitting nets to train.

References

(1]
Attributes

precision
Precision of filter network.

Methods

build(coord_, atype , natoms, box , mesh, ...)

build_type_exclude_mask(exclude types, ...)
compute_input_stats(data_coord, data_box,

)

enable_compression(min_nbor_dist, graph, ...)

enable_mized_precision((mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_rot_mat()

get_tensor_names([suffix])
init_variables(graph, graph_def[, suffix])

merge_input_stats(stat_dict)

pass_tensors_from_frz_model(descrpt_reshape

)
prod_force_virial(atom ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max_nbor_size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cut-off radius.

Get rotational matrix.

Get names of tensors.

Init the embedding net variables with the given
dict.

Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self.dstd.

Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph_def.
Compute force and virial.

Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = ") — Tensor

Build the computational graph for the descriptor.

Parameters

Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

coord_
The coordinate of atoms

atype_
The type of atoms

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list,
input_dict: dict) — None

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make stat input

data_box
The box. Can be generated by deepmd.model.make_stat_input

data_atype
The atom types. Can be generated by deepmd.model.make stat_input

natoms_vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make_stat_input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make stat_input

input_dict
Dictionary for additional input

enable_compression(min_nbor dist: float, graph: Graph, graph_def: GraphDef, table_extrapolate:
float = 5, table stride 1: float = 0.01, table stride 2: float = 0.1,
check frequency: int = -1, suffix: str ="") — None

17.1. deepmd package 225

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

DeePMD-kit

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.
Parameters

min_nbor_dist
The nearest distance between atoms

graph
[tf.Graph] The graph of the model

graph_def
[tf.GraphDef] The graph_def of the model

table_extrapolate
The scale of model extrapolation

table_stride 1
The uniform stride of the first table

table_stride 2
The uniform stride of the second table

check frequency
The overflow check frequency

suffix
[str, optional] The suffix of the scope

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.
Parameters

mixed prec
The mixed precision setting used in the embedding net

get_dim_out () — int

Returns the output dimension of this descriptor.
get_dim_rot_mat_1() — int

Returns the first dimension of the rotation matrix. The rotation is of shape dim_1 x 3.
get_nlist () — Tuple[Tensor, Tensor, List[int], List[int]]

Returns neighbor information.

Returns

nlist
Neighbor list
rij
The relative distance between the neighbor and the center atom.
sel_a
The number of neighbors with full information
sel_r
The number of neighbors with only radial information
get_ntypes() — int

Returns the number of atom types.

226 Chapter 17. Python API

https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

get_rcut () — float
Returns the cut-off radius.
get_rot_mat () — Tensor
Get rotational matrix.
init_variables(graph: Graph, graph_def: GraphDef, suffix: str =) — None
Init the embedding net variables with the given dict.
Parameters
graph
[tf.Graph] The input frozen model graph

graph_def
[tf.GraphDef] The input frozen model graph_def

suffix
[str, optional] The suffix of the scope

merge_input_stats(stat_dict)
Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.
Parameters

stat_dict

The dict of statisitcs computed from compute _input_stats, including:
sumr
The sum of radial statisitcs.

suma
The sum of relative coord statisitcs.

sumn
The sum of neighbor numbers.

sumr2
The sum of square of radial statisitcs.

suma?2
The sum of square of relative coord statisitcs.

prod_force_virial (atom_ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]
Compute force and virial.

Parameters

atom_ener
The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

Returns

force
The force on atoms

17.1. deepmd package 227

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple

DeePMD-kit

virial
The total virial

atom_virial
The atomic virial

deepmd.descriptor.se__a_ebd module

class deepmd.descriptor.se_a_ebd.DescrptSeAEbd (*args, **kwargs)
Bases: DescrptSed

DeepPot-SE descriptor with type embedding approach.
Parameters

rcut
The cut-off radius

rcut_smth
From where the environment matrix should be smoothed

sel
[1ist[str]] selli] specifies the maxmum number of type i atoms in the cut-off radius

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net

axis_neuron
Number of the axis neuron (number of columns of the sub-matrix of the embedding
matrix)

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

type_one_side
Try to build N types embedding nets. Otherwise, building N types2 embedding
nets

type nchanl
Number of channels for type representation

type_nlayer
Number of hidden layers for the type embedding net (skip connected).

numb_aparam
Number of atomic parameters. If >0 it will be embedded with atom types.

set_davg zero
Set the shift of embedding net input to zero.

activation_function
The activation function in the embedding net. Supported options are {0}

precision
The precision of the embedding net parameters. Supported options are {1}

228 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

exclude_types

[List[List[int]]] The excluded pairs of types which have no interaction with each
other. For example, [[0, 1]] means no interaction between type 0 and type 1.

Attributes

precision
Precision of filter network.

Methods

build(coord_, atype , natoms, box , mesh, ...)

build_type_exclude_mask(exclude types, ...)
compute_input_stats(data_coord, data box,

)

enable_compression(min_nbor_dist, graph, ...)

enable_mixed_precision([mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_rot_mat()

get_tensor_names([suffix])
init_variables(graph, graph_def[, suffix])

merge_input_stats(stat_dict)

pass_tensors_from_frz_model(descrpt_reshape

)
prod_force_virial(atom_ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max_nbor_size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cut-off radius.

Get rotational matrix.

Get names of tensors.

Init the embedding net variables with the given
dict.

Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self.dstd.

Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph_def.
Compute force and virial.

Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = ") — Tensor

Build the computational graph for the descriptor.

Parameters

coord_
The coordinate of atoms

atype_
The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

17.1. deepmd package

229

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

deepmd.descriptor.se__a_ef module

class deepmd.descriptor.se_a_ef.DescrptSeAEf (*args, **kwargs)

Bases: Descriptor

Smooth

edition descriptor with Ef.

Parameters

rcut
The cut-off radius

rcut_smth
From where the environment matrix should be smoothed

sel
[1ist[str]]sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuron
[1list[int]] Number of neurons in each hidden layers of the embedding net

axis_neuron
Number of the axis neuron (number of columns of the sub-matrix of the embedding
matrix)

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

type_one_side
Try to build N_types embedding nets. Otherwise, building N types"2 embedding
nets

exclude_types
[List[List[int]]] The excluded pairs of types which have no interaction with each
other. For example, [[0, 1]] means no interaction between type 0 and type 1.

230

Chapter 17. Python API

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

set_davg_zero

Set the shift of embedding net input to zero.

activation_function

The activation function in the embedding net. Supported options are “relu”, “relu6”,

“softplus”, “sigmoid”, “tanh”, “gelu”, “

precision

gelu_tf”, “None”, “none”.

The precision of the embedding net parameters. Supported options are “default”,
“float16”, “float32”, “float64”, “bfloatl16”.

uniform_seed

Only for the purpose of backward compatibility, retrieves the old behavior of using

the random seed

Methods

build(coord_, atype , natoms, box_, mesh, ...)

build_type_exclude_mask(exclude types, ...)
compute_input_stats(data_coord, data_box,

o)

enable_compression(min nbor dist, graph, ...)

enable_mixed_precision([mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_rot_mat()

get_tensor_names([suffix])
init_variables(graph, graph_def[, suffix])

pass_tensors_from_frz_model(*tensors)

prod_force_virial(atom_ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max nbor size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cut-off radius.

Get rotational matrix.

Get names of tensors.

Init the embedding net variables with the given
dict.

Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph def.
Compute force and virial.

Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = "/) — Tensor

Build the computational graph for the descriptor.

Parameters

coord
The coordinate of atoms

atype_
The type of atoms

17.1. deepmd package

231

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number

of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs. Should have ‘efield’.

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

compute_input_stats(data coord: list, data box: list, data_atype: list, natoms_vec: list, mesh: list,
input_dict: dict) — None

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters
data_coord
The coordinates. Can be generated by deepmd.model.make stat input

data_box
The box. Can be generated by deepmd.model.make_stat_input

data_atype
The atom types. Can be generated by deepmd.model.make stat_input

natoms vec

The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make_stat_input

mesh

The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input

input_dict
Dictionary for additional input
get_dim_out () — int
Returns the output dimension of this descriptor.
get_dim_rot_mat_1() — int
Returns the first dimension of the rotation matrix. The rotation is of shape dim 1 x 3.
get_nlist () — Tuple[Tensor, Tensor, List[int], List[int]]

Returns neighbor information.

232 Chapter 17. Python API

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

Returns

nlist
Neighbor list

rij
The relative distance between the neighbor and the center atom.

sel_a
The number of neighbors with full information

sel_r
The number of neighbors with only radial information

get_ntypes() — int
Returns the number of atom types.
get_rcut () — float
Returns the cut-off radius.
get_rot_mat () — Tensor
Get rotational matrix.
prod_force_virial (atom_ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]
Compute force and virial.

Parameters

atom_ener
The atomic energy

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number

of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

Returns

force
The force on atoms

virial
The total virial

atom_virial
The atomic virial

class deepmd.descriptor.se_a_ef.DescrptSeAEfLower (*args, **kwargs)
Bases: DescrptSed

Helper class for implementing DescrptSeAEf.
Attributes

precision
Precision of filter network.

17.1. deepmd package 233

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple

DeePMD-kit

Methods

build(coord_, atype , natoms, box_, mesh, ...)

build_type_exclude_mask(exclude types, ...)
compute_input_stats(data coord, data box,

)

enable_compression(min_nbor_dist, graph, ...)

enable_mixed_precision([mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_rot_mat()

get_tensor_names([suffix])
init_variables(graph, graph_def[, suffix])

merge_input_stats(stat_dict)

pass_tensors_from_frz_model(descrpt reshape

..
prod_force_virial(atom_ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max nbor size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed_dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cut-off radius.

Get rotational matrix.

Get names of tensors.

Init the embedding net variables with the given
dict.

Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self.dstd.

Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph_def.
Compute force and virial.

Register a descriptor plugin.

build(coord , atype , natoms, box_, mesh, input_dict, suffix="', reuse=None)

Build the computational graph for the descriptor.

Parameters

coord
The coordinate of atoms

atype_
The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbe is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

234

Chapter 17. Python API

https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor
compute_input_stats(data_coord, data_box, data_atype, natoms_vec, mesh, input_dict)
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.
Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make_stat_input

data_box
The box. Can be generated by deepmd.model.make stat input

data_atype
The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make stat_input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input

input_dict
Dictionary for additional input

deepmd.descriptor.se__a__mask module

class deepmd.descriptor.se_a_mask.DescrptSeAMask (*args, **kwargs)
Bases: DescrptSed

DeepPot-SE constructed from all information (both angular and radial) of atomic configurations. The
embedding takes the distance between atoms as input.

The descriptor D! € RM1*Mz ig given by [1]
where R? € RV*4 is the coordinate matrix, and each row of R? can be constructed as follows
s(rji)
S(Tji)rji
(R =1 strids |

s(rji)zji

T

17.1. deepmd package 235

DeePMD-kit

whereRj; = R; —R; = (i, Y, 2j:) is the relative coordinate and rj; = ||R;;|| is its norm. The switching
function s(r) is defined as:

1

e r<rg
p 3 2 _
s(r) = %{(:7’";) (=6(; =) + 157 == —10) + 1}, rs<r<r.
0, r>Te

Each row of the embedding matrix G € RV*M:1 consists of outputs of a embedding network A of

S(’I"ji)l
(G"); = N(s(rjs))

GL € RV*Mz takes first My columns of G'. The equation of embedding network A can be found at
deepmd.utils.network. embedding_net (). Specially for descriptor se_a_mask is a concise implemen-
tation of se_a. The difference is that se_a_mask only considered a non-pbc system. And accept a mask
matrix to indicate the atom i in frame j is a real atom or not. (1 means real atom, 0 means ghost atom)
Thus se_a_mask can accept a variable number of atoms in a frame.

Parameters

sel
[1ist[str]] sel[i] specifies the maxmum number of type i atoms in the neighbor list.

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net A/

axis_neuron
Number of the axis neuron M, (number of columns of the sub-matrix of the embed-
ding matrix)

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

type_one_side
Try to build N_types embedding nets. Otherwise, building N types™2 embedding
nets

exclude_types
[List[List[int]]] The excluded pairs of types which have no interaction with each
other. For example, [[0, 1]] means no interaction between type 0 and type 1.

activation_function
The activation function in the embedding net. Supported options are {0}

precision
The precision of the embedding net parameters. Supported options are {1}

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

References
.. [1] Linfeng Zhang, Jiequn Han, Han Wang, Wissam A. Saidi, Roberto Car, and E.

Weinan. 2018.
End-to-end symmetry preserving inter-atomic potential energy model for finite and

236

Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

extended systems. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (NIPS’18). Curran Associates Inc., Red Hook, NY,

USA, 4441-4451.
Attributes

precision
Precision of filter network.

Methods

build(coord_, atype , natoms, box , mesh, ...)

build_type_exclude_mask(exclude types, ...)
compute_input_stats(data _coord, data_box,

)

enable_compression(min_nbor_dist, graph, ...)

enable_mixed_precision([mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_rot_mat()

get_tensor_names([suffix])
init_variables(graph, graph_def[, suffix])

merge_input_stats(stat_dict)

pass_tensors_from_frz_model(descrpt_reshape

)
prod_force_virial(atom_ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the descriptor.
Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max_nbor_size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cutoff radius.

Get rotational matrix.

Get names of tensors.

Init the embedding net variables with the given
dict.

Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self.dstd.

Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph_def.
Compute force and virial.

Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box_: Tensor, mesh: Tensor, input_dict:
Dict[str, Any], reuse: bool | None = None, suffix: str =) — Tensor

Build the computational graph for the descriptor.

Parameters

coord_
The coordinate of atoms

atype_
The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

17.1. deepmd package

237

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbc is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list,
input_dict: dict) — None
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make stat_input

data_box
The box. Can be generated by deepmd.model.make_stat_input

data_atype
The atom types. Can be generated by deepmd.model.make stat_input

natoms vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make stat input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input
input_dict
Dictionary for additional input
get_rcut () — float
Returns the cutoff radius.

prod_force_virial(atom ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]
Compute force and virial.
Parameters

atom_ener
The atomic energy

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

238 Chapter 17. Python API

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple

DeePMD-kit

Returns

force
The force on atoms

virial
None for se_a_mask op

atom_virial
None for se_a_mask op

deepmd.descriptor.se__atten module

class deepmd.descriptor.se_atten.DescrptSeAtten (*args, **kwargs)

Bases: DescrptSed
Smooth version descriptor with attention.
Parameters

rcut
The cut-off radius r.

rcut_smth
From where the environment matrix should be smoothed r,

sel
[1list[str]] sel[i] specifies the maxmum number of type i atoms in the cut-off radius

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net N/

axis_neuron
Number of the axis neuron Ms (number of columns of the sub-matrix of the embed-
ding matrix)

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

type_one_side
Try to build N_types embedding nets. Otherwise, building N_types*2 embedding
nets

exclude_types
[List[List[int]]] The excluded pairs of types which have no interaction with each
other. For example, [[0, 1]] means no interaction between type 0 and type 1.

set_davg zero
Set the shift of embedding net input to zero.

activation_function
The activation function in the embedding net. Supported options are “relu”, “relu6”,

R MW

“softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

17.1. deepmd package 239

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

precision
The precision of the embedding net parameters. Supported options are “default”,
“float16”, “float32”, “float64”, “bfloat16”.

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

attn
The length of hidden vector during scale-dot attention computation.

attn_layer
The number of layers in attention mechanism.

attn_dotr
Whether to dot the relative coordinates on the attention weights as a gated scheme.

attn_mask
Whether to mask the diagonal in the attention weights.

multi_task
If the model has multi fitting nets to train.

Attributes

precision
Precision of filter network.

240 Chapter 17. Python API

DeePMD-kit

Methods

build(coord_, atype , natoms, box_, mesh, ...)
build_type_ezclude_mask(exclude types, ...)

compute_input_stats(data_coord, data_box,

)

enable_compression(min_nbor_dist, graph, ...)

enable_mixed_precision([mixed prec])
get_dim_out()
get_dim_rot_mat_1()

get_feed_dict(coord , atype , natoms, box,
mesh)

get_nlist()

get_ntypes()

get_rcut()

get_rot_mat()

get_tensor_names([suffix])
init_variables(graph, graph def[, suffix])

merge_input_stats(stat_dict)

pass_tensors_from_frz_model(descrpt_reshape

)

prod_force_virial(atom_ener, natoms)
register(key)

Build the computational graph for the descrip-
tor.

Build the type exclude mask for the attention de-
scriptor.

Compute the statisitcs (avg and std) of the train-
ing data.

Reveive the statisitcs (distance, max_nbor_size
and env_mat_range) of the training data.
Reveive the mixed precision setting.

Returns the output dimension of this descriptor.
Returns the first dimension of the rotation ma-
trix.

Generate the feed_dict for current descriptor.

Returns neighbor information.

Returns the number of atom types.

Returns the cut-off radius.

Get rotational matrix.

Get names of tensors.

Init the embedding net variables with the given
dict.

Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self.dstd.

Pass the descrpt_reshape tensor as well as de-
scrpt_deriv tensor from the frz graph def.
Compute force and virial.

Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,

reuse: bool | None = None, suffix: str = "/) — Tensor

Build the computational graph for the descriptor.

Parameters

coord
The coordinate of atoms

atype
The type of atoms

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbc is assumed. if size of mesh == 0, no-pbc is assumed.

17.1.

deepmd package

241

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

input_dict
Dictionary for additional inputs

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

build_type_exclude_mask (exclude types: List[Tuple[int, int]], ntypes: int, sel: List[int], ndescrpt:
int, atype: Tensor, shape0: Tensor, nei_type_vec: Tensor) — Tensor

Build the type exclude mask for the attention descriptor.
Parameters

exclude_types
[List[Tuple[int, int]]] The list of excluded types, e.g. [(0, 1), (1, 0)] means the
interaction between type 0 and type 1 is excluded.

ntypes
[int] The number of types.

sel
[List[int]] The list of the number of selected neighbors for each type.

ndescrpt
[int] The number of descriptors for each atom.

atype
[tf.Tensor] The type of atoms, with the size of shape0.

shape0
[tf.Tensor] The shape of the first dimension of the inputs, which is equal to nsam-

ples * natoms.

nei_type vec
[tf.Tensor] The type of neighbors, with the size of (shape0, nnei).

Returns

tf.Tensor
The type exclude mask, with the shape of (shape0, ndescrpt), and the precision of
GLOBAL_TF FLOAT PRECISION. The mask has the value of 1 if the interaction
between two types is not excluded, and 0 otherwise.

See also:

deepmd.descriptor.descriptor.Descriptor.build_type_exclude_mask

242 Chapter 17. Python API

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

Notes

This method has the similiar way to build the type exclude mask as deepmd.descriptor.
descriptor.Descriptor.build_type_exclude_mask(). The mathmatical expression has been
explained in that method. The difference is that the attention descriptor has provided the type of
the neighbors (idx_j) that is not in order, so we use it from an extra input.

compute_input_stats(data coord: list, data box: list, data_atype: list, natoms_vec: list, mesh: list,
input_dict: dict, mixed_type: bool = False, real natoms vec: list | None =
None) — None

Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.

Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make stat_input

data_box
The box. Can be generated by deepmd.model.make_stat_input

data_atype
The atom types. Can be generated by deepmd.model.make stat_input

natoms vec
The vector for the number of atoms of the system and different types of atoms. If
mixed type is True, this para is blank. See real natoms_vec.

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input

input_dict
Dictionary for additional input

mixed_type
Whether to perform the mixed type mode. If True, the input data has the
mixed type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

real natoms_vec
If mixed_type is True, it takes in the real natoms_vec for each frame.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str =) — None
Init the embedding net variables with the given dict.

Parameters

graph
[tf.Graph] The input frozen model graph

graph_def
[tf.GraphDef] The input frozen model graph_def

suffix
[str, optional] The suffix of the scope

17.1. deepmd package 243

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

deepmd.descriptor.se_r module

class deepmd.descriptor.se_r.DescrptSeR(*args, **kwargs)

Bases: DescrptSe
DeepPot-SE constructed from radial information of atomic configurations.
The embedding takes the distance between atoms as input.

Parameters

rcut
The cut-off radius

rcut_smth
From where the environment matrix should be smoothed

sel
[1ist[str]] selli] specifies the maxmum number of type i atoms in the cut-off radius

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

type_one_side
Try to build N_types embedding nets. Otherwise, building N types*2 embedding
nets

exclude types
[List[List[int]]] The excluded pairs of types which have no interaction with each
other. For example, [[0, 1]] means no interaction between type 0 and type 1.

activation_function
The activation function in the embedding net. Supported options are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
The precision of the embedding net parameters. Supported options are “default”,
“float16”, “float32”, “float64”, “bfloat16”.

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

Attributes

precision
Precision of filter network.

244 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

Methods

build(coord_, atype , natoms, box_, mesh, ...) Build the computational graph for the descrip-
tor.

build_type_exclude_mask(exclude types, ...) Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, Compute the statisitcs (avg and std) of the train-

) ing data.

enable_compression(min nbor dist, graph,...) Reveive the statisitcs (distance, max nbor size
and env_mat_range) of the training data.

enable_mixed_precision([mixed prec]) Reveive the mixed precision setting.

get_dim_out() Returns the output dimension of this descriptor.

get_dim_rot_mat_1() Returns the first dimension of the rotation ma-
trix.

get_feed_dict(coord , atype , natoms, box, Generate the feed dict for current descriptor.

mesh)

get_nlist() Returns neighbor information.

get_ntypes() Returns the number of atom types.

get_rcut() Returns the cut-off radius.

get_tensor_names([suffix]) Get names of tensors.

init_variables(graph, graph_def[, suffix]) Init the embedding net variables with the given
dict.

merge_input_stats(stat_dict) Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self .dstd.

pass_tensors_from_frz_model(descrpt reshape Pass the descrpt reshape tensor as well as de-

) scrpt_deriv tensor from the frz graph def.

prod_force_virial(atom_ener, natoms) Compute force and virial.

register(key) Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = ") — Tensor

Build the computational graph for the descriptor.
Parameters

coord
The coordinate of atoms

atype_
The type of atoms

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbe is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

17.1. deepmd package 245

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor
compute_input_stats(data_coord, data_box, data_atype, natoms_vec, mesh, input_dict)
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.
Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make_stat_input

data_box
The box. Can be generated by deepmd.model.make stat input

data_atype
The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make stat_input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input
input_dict
Dictionary for additional input
enable_compression(min nbor dist: float, graph: Graph, graph def: GraphDef, table extrapolate:
float = 5, table_stride 1: float = 0.01, table stride 2: float = 0.1,
check frequency: int = -1, suffix: str =) — None

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.
Parameters

min_nbor_dist

The nearest distance between atoms
graph

[tf.Graph] The graph of the model
graph_def

[tf.GraphDef] The graph_def of the model

table_extrapolate
The scale of model extrapolation

table_stride 1
The uniform stride of the first table

table stride 2
The uniform stride of the second table

246 Chapter 17. Python API

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph

DeePMD-kit

check frequency
The overflow check frequency

suffix
[str, optional] The suffix of the scope
get_dim_out ()
Returns the output dimension of this descriptor.
get_nlist()
Returns neighbor information.

Returns

nlist
Neighbor list
rij
The relative distance between the neighbor and the center atom.
sel_a
The number of neighbors with full information
sel_r
The number of neighbors with only radial information
get_ntypes()
Returns the number of atom types.
get_rcut ()
Returns the cut-off radius.
merge_input_stats (stat_dict)
Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

Parameters
stat_dict
The dict of statisitcs computed from compute_input_stats, including:
sumr

The sum of radial statisitcs.

sumn
The sum of neighbor numbers.

sumr2
The sum of square of radial statisitcs.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]
Compute force and virial.

Parameters

atom_ener
The atomic energy

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

17.1. deepmd package 247

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple

DeePMD-kit

Returns

force
The force on atoms

virial
The total virial

atom_virial
The atomic virial

deepmd.descriptor.se__t module

class deepmd.descriptor.se_t.DescrptSeT (*args, **kwargs)
Bases: DescrptSe
DeepPot-SE constructed from all information (both angular and radial) of atomic configurations.
The embedding takes angles between two neighboring atoms as input.
Parameters

rcut
The cut-off radius

rcut_smth
From where the environment matrix should be smoothed

sel
[1ist[str]] seli] specifies the maxmum number of type i atoms in the cut-off radius

neuron
[1ist[int]] Number of neurons in each hidden layers of the embedding net

resnet_dt
Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

trainable
If the weights of embedding net are trainable.

seed
Random seed for initializing the network parameters.

set_davg zero
Set the shift of embedding net input to zero.

activation_function
The activation function in the embedding net. Supported options are “relu”, “relu6”,
“softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
The precision of the embedding net parameters. Supported options are “default”,
“float16”, “float32”, “float64”, “bfloat16”.

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

Attributes

precision
Precision of filter network.

248 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

Methods

build(coord_, atype , natoms, box_, mesh, ...) Build the computational graph for the descrip-
tor.

build_type_exclude_mask(exclude types, ...) Build the type exclude mask for the descriptor.

compute_input_stats(data_coord, data_box, Compute the statisitcs (avg and std) of the train-

) ing data.

enable_compression(min nbor dist, graph,...) Reveive the statisitcs (distance, max nbor size
and env_mat_range) of the training data.

enable_mixed_precision([mixed prec]) Reveive the mixed precision setting.

get_dim_out() Returns the output dimension of this descriptor.

get_dim_rot_mat_1() Returns the first dimension of the rotation ma-
trix.

get_feed_dict(coord , atype , natoms, box, Generate the feed dict for current descriptor.

mesh)

get_nlist() Returns neighbor information.

get_ntypes() Returns the number of atom types.

get_rcut() Returns the cut-off radius.

get_tensor_names([suffix]) Get names of tensors.

init_variables(graph, graph_def[, suffix]) Init the embedding net variables with the given
dict.

merge_input_stats(stat_dict) Merge the statisitcs computed from com-
pute_input_stats to obtain the self.davg and
self .dstd.

pass_tensors_from_frz_model(descrpt reshape Pass the descrpt reshape tensor as well as de-

) scrpt_deriv tensor from the frz graph def.

prod_force_virial(atom_ener, natoms) Compute force and virial.

register(key) Register a descriptor plugin.

build(coord : Tensor, atype : Tensor, natoms: Tensor, box : Tensor, mesh: Tensor, input_dict: dict,
reuse: bool | None = None, suffix: str = ") — Tensor

Build the computational graph for the descriptor.
Parameters

coord
The coordinate of atoms

atype_
The type of atoms

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

box

[tf.Tensor] The box of the system

mesh
For historical reasons, only the length of the Tensor matters. if size of mesh == 6,
pbe is assumed. if size of mesh == 0, no-pbc is assumed.

input_dict

Dictionary for additional inputs

17.1. deepmd package 249

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://www.tensorflow.org/api_docs/python/tf/Tensor

DeePMD-kit

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

descriptor
The output descriptor

compute_input_stats(data_coord: list, data_box: list, data_atype: list, natoms_vec: list, mesh: list,
input_dict: dict) — None
Compute the statisitcs (avg and std) of the training data. The input will be normalized by the
statistics.
Parameters

data_coord
The coordinates. Can be generated by deepmd.model.make_stat_input

data_box
The box. Can be generated by deepmd.model.make stat input

data_atype
The atom types. Can be generated by deepmd.model.make_stat_input

natoms_vec
The vector for the number of atoms of the system and different types of atoms.
Can be generated by deepmd.model.make stat_input

mesh
The mesh for neighbor searching. Can be generated by
deepmd.model.make_stat_input
input_dict
Dictionary for additional input
enable_compression(min nbor dist: float, graph: Graph, graph def: GraphDef, table extrapolate:

float = 5, table stride 1: float = 0.01, table stride 2: float = 0.1,
check frequency: int = -1, suffix: str =) — None

Reveive the statisitcs (distance, max_nbor_size and env_mat_range) of the training data.
Parameters

min_nbor_dist

The nearest distance between atoms
graph

[tf.Graph] The graph of the model
graph_def

[tf.GraphDef] The graph_def of the model

table_extrapolate
The scale of model extrapolation

table_stride 1
The uniform stride of the first table

table stride 2
The uniform stride of the second table

250 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph

DeePMD-kit

check frequency
The overflow check frequency

suffix
[str, optional] The suffix of the scope

get_dim_out () — int
Returns the output dimension of this descriptor.
get_nlist () — Tuple[Tensor, Tensor, List[int], List[int]]
Returns neighbor information.

Returns

nlist
Neighbor list

rij
The relative distance between the neighbor and the center atom.

sel_a
The number of neighbors with full information

sel_r
The number of neighbors with only radial information

get_ntypes() — int
Returns the number of atom types.
get_rcut () — float
Returns the cut-off radius.
merge_input_stats(stat_dict)
Merge the statisitcs computed from compute_input_stats to obtain the self.davg and self.dstd.

Parameters

stat_dict

The dict of statisitcs computed from compute input_stats, including:
sumr
The sum of radial statisitcs.

suma
The sum of relative coord statisitcs.

sumn
The sum of neighbor numbers.

sumr2
The sum of square of radial statisitcs.

suma?2
The sum of square of relative coord statisitcs.

prod_force_virial(atom_ener: Tensor, natoms: Tensor) — Tuple[Tensor, Tensor, Tensor]
Compute force and virial.
Parameters

atom_ener
The atomic energy

17.1. deepmd package 251

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.Tuple

DeePMD-kit

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

Returns

force

The force on atoms
virial

The total virial

atom_virial
The atomic virial

deepmd.entrypoints package

Submodule that contains all the DeePMD-Kit entry point scripts.

deepmd.entrypoints.compress (¥, input: str, output: str, extrapolate: int, step: float, frequency: str,
checkpoint,_folder: str, training_script: str, mpi_log: str, log_path: str |
None, log_level: int, *kwargs)
Compress model.
The table is composed of fifth-order polynomial coefficients and is assembled from two sub-tables. The
first table takes the step parameter as the domain’s uniform step size, while the second table takes 10

* step as it’s uniform step size. The range of the first table is automatically detected by the code, while
the second table ranges from the first table’s upper boundary(upper) to the extrapolate(parameter) *

upper.

Parameters
input
[str]frozen model file to compress

output
[str] compressed model filename

extrapolate
[int] scale of model extrapolation

step
[float] uniform step size of the tabulation’s first table

frequency
[str] frequency of tabulation overflow check

checkpoint_folder

[str] trining checkpoint folder for freezing
training_ script

[str] training script of the input frozen model
mpi_log

[str] mpi logging mode for training

log_path
[Optionall[str]]if speccified log will be written to this file

252 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

log_level
[int] logging level

**kwargs
additional arguments

deepmd.entrypoints.config(*, output: str, **kwargs)
Auto config file generator.

Parameters

output
[str]file to write config file

**kwargs
additional arguments

Raises

RuntimeError
if user does not input any systems

ValueError
if output file is of wrong type

**kwargs
additional arguments

deepmd.entrypoints.convert (¥, FROM: str, input_model: str, output_model: str, **kwargs)
deepmd.entrypoints.doc_train_input (*, out_type: str = 'rst’, **kwargs)
Print out trining input arguments to console.

deepmd.entrypoints.freeze (*, checkpoint folder: str, output: str, node_names: str | None = None,
nvnmd_weight: str | None = None, united_model: bool = False, **kwargs)

Freeze the graph in supplied folder.
Parameters

checkpoint_folder
[str]location of the folder with model

output
[str] output file name

node names
[Optional[str], optional] names of nodes to output, by default None

nvnmd_weight
[Optional[str], optional] nvnmd weight file

united _model
[bool] when in multi-task mode, freeze all nodes into one unit model

**kwargs
other arguments

deepmd.entrypoints.make_model_devi (*, models: list, system: str, set_prefix: str, output: str, frequency:
int, **kwargs)

Make model deviation calculation.

Parameters

17.1. deepmd package 253

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

models
[1ist] A list of paths of models to use for making model deviation

system
[str] The path of system to make model deviation calculation

set,_prefix
[str] The set prefix of the system

output
[str] The output file for model deviation results

frequency
[int] The number of steps that elapse between writing coordinates in a trajectory by
a MD engine (such as Gromacs / Lammps). This paramter is used to determine the
index in the output file.

**kwargs
Arbitrary keyword arguments.

deepmd.entrypoints.neighbor_stat (¥ system: str, rcut: float, type map: List[str], one_type: bool =
False, **kwargs)

Calculate neighbor statistics.
Parameters

system
[str]system to stat

rcut
[float] cutoff radius

type_map
[list[str]] type map

one_type
[bool, optional, default=False] treat all types as a single type

**kwargs
additional arguments

Examples

>>> neighbor_stat(system='.', rcut=6., type_map=["C", "H", "O", "N", "P", "S", "Mg", "Na", "HW
(_}Il . n Ow” , llmNall . l|mcl|l , Ilmcll . l|mHl| , llmMgll . l|le| , |ImD|I , llmPIl])

min_nbor_dist: 0.6599510670195264

max_nbor_size: [23, 26, 19, 16, 2, 2, 1, 1, 72, 37, 5, 0, 31, 29, 1, 21, 20, 5]

deepmd.entrypoints.test (*, model: str, system: str, datafile: str, set_prefix: str, numb_test: int,
rand_seed: int | None, shuffle test: bool, detail file: str, atomic: bool,
**kwargs)

Test model predictions.
Parameters

model
[str] path where model is stored

system
[str] system directory

254 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

datafile
[str] the path to the list of systems to test

set,_prefix
[str]string prefix of set

numb_test
[int] munber of tests to do

rand_seed
[Optionall[int]] seed for random generator

shuffle test
[bool] whether to shuffle tests

detail file
[Optionall[str]] file where test details will be output

atomic
[bool] whether per atom quantities should be computed

**kwargs
additional arguments

Raises

RuntimeError
if no valid system was found

deepmd.entrypoints.train_dp(*, INPUT: str, init_model: str | None, restart: str | None, output: str,
init_frz_model: str, mpi_log: str, log_level: int, log_path: str | None,
is_compress: bool = False, skip_neighbor_stat: bool = False, finetune: str
| None = None, **kwargs)

Run DeePMD model training.
Parameters

INPUT
[str]json/yaml control file

init_model
[Optionall[str]] path to checkpoint folder or None

restart
[Optional[str]] path to checkpoint folder or None

output

[str] path for dump file with arguments
init_frz model

[str] path to frozen model or None
mpi _log

[str] mpi logging mode

log_level
[int] logging level defined by int 0-3

log_path
[Optionall[str]]logging file path or None if logs are to be output only to stdout

is_compress
[bool] indicates whether in the model compress mode

17.1. deepmd package 255

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

DeePMD-kit

skip_neighbor_stat
[bool, default=False] skip checking neighbor statistics

finetune
[Optional[str]] path to pretrained model or None

**kwargs
additional arguments

Raises

RuntimeError
if distributed training job name is wrong

deepmd.entrypoints.transfer (* old model: str, raw_model: str, output: str, **kwargs)
Transfer operation from old fron graph to new prepared raw graph.

Parameters

old_model
[str] frozen old graph model

raw_model
[str] new model that will accept ops from old model

output
[str] new model with transfered parameters will be saved to this location

**kwargs
additional arguments

Submodules
deepmd.entrypoints.compress module

Compress a model, which including tabulating the embedding-net.

deepmd.entrypoints.compress.compress (¥, input: str, output: str, extrapolate: int, step: float,
frequency: str, checkpoint_folder: str, training_script: str,
mpi_log: str, log_path: str | None, log_level: int, **kwargs)
Compress model.
The table is composed of fifth-order polynomial coefficients and is assembled from two sub-tables. The
first table takes the step parameter as the domain’s uniform step size, while the second table takes 10

* step as it’s uniform step size. The range of the first table is automatically detected by the code, while
the second table ranges from the first table’s upper boundary(upper) to the extrapolate(parameter) *

upper.

Parameters
input
[str] frozen model file to compress

output
[str] compressed model filename

extrapolate
[int] scale of model extrapolation

step
[float] uniform step size of the tabulation’s first table

256 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

DeePMD-

kit

frequency
[str] frequency of tabulation overflow check

checkpoint,_folder
[str] trining checkpoint folder for freezing

training_script
[str] training script of the input frozen model

mpi_log
[str] mpi logging mode for training

log_path
[Optional[str]]if speccified log will be written to this file

log_level
[int] logging level

**kwargs
additional arguments

deepmd.entrypoints.config module

Quickly create a configuration file for smooth model.

deepmd.entrypoints.config.config(* output: str, **kwargs)
Auto config file generator.

Parameters

output
[str] file to write config file

**kwargs
additional arguments

Raises

RuntimeError
if user does not input any systems

ValueError
if output file is of wrong type

*kwargs
additional arguments

deepmd.entrypoints.convert module

deepmd.entrypoints.convert.convert (*, FROM: str, input_model: str, output_model: str, *kwargs)

17.1. deepmd package

257

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

deepmd.entrypoints.doc module

Module that prints train input arguments docstrings.

deepmd.entrypoints.doc.doc_train_input (¥, out_type: str = ‘rst’, **kwargs)

Print out trining input arguments to console.

deepmd.entrypoints.freeze module

Script for freezing TF trained graph so it can be used with LAMMPS and i-PI.

References

https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc

deepmd.entrypoints.freeze.freeze (* checkpoint folder: str, output: str, node names: str | None =
None, nvnmd_weight: str | None = None, united_model: bool =
False, **kwargs)

Freeze the graph in supplied folder.
Parameters

checkpoint_folder
[str]location of the folder with model

output
[str] output file name

node_names
[Optional[str], optional] names of nodes to output, by default None

nvnmd_weight
[Optionall[str], optional] nvnmd weight file

united model
[bool] when in multi-task mode, freeze all nodes into one unit model

**kwargs
other arguments

deepmd.entrypoints.ipi module

Use dp_ipi inside the Python package.
deepmd.entrypoints.ipi.dp_ipi()
dp_ipi.

258 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

DeePMD-kit

deepmd.entrypoints.main module

DeePMD-Kit entry point module.

deepmd.entrypoints.main.get_11(log level: str) — int
Convert string to python logging level.

Parameters

log_level
[str]allowed input values are: DEBUG, INFO, WARNING, ERROR, 3,2, 1,0

Returns
int
one of python logging module log levels - 10, 20, 30 or 40

deepmd.entrypoints.main.main(args: List[str] | None = None)
DeePMD-Kit entry point.

Parameters

args
[List[str], optional] list of command line arguments, used to avoid calling from
the subprocess, as it is quite slow to import tensorflow

Raises

RuntimeError
if no command was input

deepmd.entrypoints.main.main_parser () — ArgumentParser

DeePMD-Kit commandline options argument parser.
Returns

argparse.ArgumentParser
main parser of DeePMD-kit

deepmd.entrypoints.main.parse_args(args: List[str] | None = None) — Namespace

Parse arguments and convert argument strings to objects.
Parameters

args
[List[str]] list of command line arguments, main purpose is testing default option
None takes arguments from sys.argv

Returns

argparse.Namespace
the populated namespace

17.1. deepmd package 259

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace

DeePMD-kit

deepmd.entrypoints.neighbor_stat module

deepmd.entrypoints.neighbor_stat.neighbor_stat (*, system: str, rcut: float, type map: List[str],
one_type: bool = False, **kwargs)

Calculate neighbor statistics.
Parameters

system
[str]system to stat

rcut
[float] cutoff radius

type_map
[list[str]] type map

one_type
[bool, optional, default=False] treat all types as a single type

**kwargs
additional arguments

Examples

>>> neighbor_stat(system='.', rcut=6., type_map=["C", "H", "O", "N", "P", "S", "Mg", "Na", "HW
:ﬁll . n Ow" , llmNall . l|mcl|l s llmcll . l|mHl| s llmMgll . l|le| , ||mO|| s llmP”])

min_nbor_dist: 0.6599510670195264

max_nbor_size: [23, 26, 19, 16, 2, 2, 1, 1, 72, 37, 5, 0, 31, 29, 1, 21, 20, 5]

deepmd.entrypoints.test module

Test trained DeePMD model.

deepmd.entrypoints.test.test (*, model: str, system: str, datafile: str, set_prefix: str, numb_test: int,
rand_seed: int | None, shuffle_test: bool, detail file: str, atomic: bool,
**kwargs)

Test model predictions.
Parameters

model
[str] path where model is stored

system
[str]system directory

datafile
[str] the path to the list of systems to test

set_prefix
[str]string prefix of set

numb_test
[int] munber of tests to do

rand_seed
[Optionall[int]] seed for random generator

260 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

shuffle test
[bool] whether to shuffle tests

detail file
[Optional[str]] file where test details will be output

atomic
[bool] whether per atom quantities should be computed

**kwargs
additional arguments

Raises

RuntimeError
if no valid system was found

deepmd.entrypoints.train module

DeePMD training entrypoint script.
Can handle local or distributed training.

deepmd.entrypoints.train.train(* INPUT: str, init_model: str | None, restart: str | None, output: str,
init_frz_model: str, mpi log: str, log_level: int, log_path: str | None,
is_compress: bool = False, skip neighbor_stat: bool = False, finetune:
str | None = None, **kwargs)
Run DeePMD model training.
Parameters

INPUT
[str]json/yaml control file

init_model
[Optional[str]] path to checkpoint folder or None

restart
[Optionall[str]] path to checkpoint folder or None

output

[str] path for dump file with arguments
init_frz_model

[str] path to frozen model or None
mpi_log

[str] mpi logging mode

log_level
[int] logging level defined by int 0-3

log path
[Optional[str]]logging file path or None if logs are to be output only to stdout

is_compress
[bool] indicates whether in the model compress mode

skip neighbor stat
[bool, default=False] skip checking neighbor statistics

17.1. deepmd package 261

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

DeePMD-kit

finetune
[Optional[str]] path to pretrained model or None

**kwargs
additional arguments

Raises

RuntimeError
if distributed training job name is wrong

deepmd.entrypoints.transfer module

Module used for transfering parameters between models.
deepmd.entrypoints.transfer.transfer (¥, old _model: str, raw_model: str, output: str, **kwargs)
Transfer operation from old fron graph to new prepared raw graph.
Parameters

old_model
[str]frozen old graph model

raw_model
[str] new model that will accept ops from old model

output
[str] new model with transfered parameters will be saved to this location

**kwargs
additional arguments

deepmd.fit package

class deepmd.fit.DipoleFittingSeA (descrpt: Tensor, neuron: List[int] = [120, 120, 120], resnet_dt: bool
= True, sel_type: List[int] | None = None, seed: int | None = None,
activation_function: str = ‘tanh’, precision: str = 'default’,
uniform_seed: bool = False)

Bases: Fitting
Fit the atomic dipole with descriptor se_a.
Parameters

descrpt
[tf.Tensor] The descrptor

neuron
[List[int]] Number of neurons in each hidden layer of the fitting net

resnet_dt
[bool] Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

sel type
[List[int]] The atom types selected to have an atomic dipole prediction. If is None,
all atoms are selected.

seed
[int] Random seed for initializing the network parameters.

262 Chapter 17. Python API

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

activation_function
[str] The activation function in the embedding net. Supported options are “relu”,

bR

“relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

)

precision
[str] The precision of the embedding net parameters. Supported options are “de-
fault”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

Attributes

precision
Precision of fitting network.

Methods
bus ld(input_d, rot_mat, natomsy, ...]) Build the computational graph for fitting net.
enable_mized_precision((mixed prec]) Reveive the mixed precision setting.
get_out_size() Get the output size.
get_sel_type() Get selected type.
init_variables(graph, graph_def[, suffix]) Init the fitting net variables with the given dict.

build(input_d: Tensor, rot_mat: Tensor, natoms: Tensor, input_dict: dict | None = None, reuse: bool
| None = None, suffix: str = ’) — Tensor

Build the computational graph for fitting net.
Parameters

input_d
The input descriptor

rot_mat
The rotation matrix from the descriptor.

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

input_dict
Additional dict for inputs.

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

dipole
The atomic dipole.

17.1. deepmd package 263

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.
Parameters

mixed prec
The mixed precision setting used in the embedding net

get_out_size() — int
Get the output size. Should be 3.

get_sel_type() — int
Get selected type.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = /) — None
Init the fitting net variables with the given dict.

Parameters

graph

[tf.Graph] The input frozen model graph
graph_def

[tf.GraphDef] The input frozen model graph_def

suffix
[str]suffix to name scope

class deepmd.fit.EnerFitting(descrpt: Tensor, neuron: List[int] = [120, 120, 120], resnet_dt: bool =

True, numb_fparam: int = 0, numb_aparam: int = 0, rcond: float =
0.001, tot,_ener_zero: bool = False, trainable: List[bool] | None = None,
seed: int | None = None, atom_ener: List[float] =[], activation function:
str = tanh’, precision: str = ‘default’, uniform_seed: bool = False,

layer name: List[str | None] | None = None, use_aparam_as_mask: bool
= False)

Bases: Fitting
Fitting the energy of the system. The force and the virial can also be trained.

The potential energy F is a fitting network function of the descriptor D:
E(D) = L0 o pm=1) 5. . o), 0
The first n hidden layers £, ... £(»=1 are given by
y = L(x;w,b) = ¢(x W + D)
where x € RM is the input vector and y € R™2 is the output vector. w € RM*N2 and b € RM are

weights and biases, respectively, both of which are trainable if trainable[i] is True. ¢ is the activation
function.

The output layer £ is given by
y=L"(x;w,b) =xTw+Db

where x € RV»~1 is the input vector and y € R is the output scalar. w € RV -1 and b € R are weights
and bias, respectively, both of which are trainable if trainable[n]is True.

Parameters

264

Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

DeePMD-kit

descrpt
The descrptor D

neuron
Number of neurons N in each hidden layer of the fitting net

resnet_dt
Time-step dt in the resnet construction: y = « + dt * ¢(Wax + b)

numb_fparam
Number of frame parameter

numb_aparam
Number of atomic parameter

rcond
The condition number for the regression of atomic energy.

tot_ener zero
Force the total energy to zero. Useful for the charge fitting.

trainable
If the weights of fitting net are trainable. Suppose that we have N; hidden layers in
the fitting net, this list is of length N; + 1, specifying if the hidden layers and the
output layer are trainable.

seed
Random seed for initializing the network parameters.

atom_ener
Specifying atomic energy contribution in vacuum. The set_davg zero key in the
descrptor should be set.

activation_function
The activation function ¢ in the embedding net. Supported options are “relu”,
“relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
The precision of the embedding net parameters. Supported options are “default”,
“float16”, “float32”, “float64”, “bfloat16”.

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

layer name
[list[Optional[str]], optional] The name of the each layer. If two layers, either
in the same fitting or different fittings, have the same name, they will share the same
neural network parameters.

use_aparam_as_mask: bool, optional
If True, the atomic parameters will be used as a mask that determines the atom is
real/virtual. And the aparam will not be used as the atomic parameters for embed-
ding.

Attributes

precision
Precision of fitting network.

17.1. deepmd package 265

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

Methods
bus Ld(inputs, natoms[, input_dict, reuse, ...]) Build the computational graph for fitting net.
change_energy_bias(data, frozen model, ...) Change the energy bias according to the input

data and the pretrained model.

compute_input_stats(all stat[, protection]) Compute the input statistics.
compute_output_stats(all_stat], mixed type]) Compute the ouput statistics.
enable_mized_precision((mixed prec]) Reveive the mixed precision setting.
get_numb_aparam() Get the number of atomic parameters.
get_numb_ fparam() Get the number of frame parameters.
init_variables(graph, graph def[, suffix]) Init the fitting net variables with the given dict.

build (inputs: Tensor, natoms: Tensor, input_dict: dict | None = None, reuse: bool | None = None,
suffix: str = ") — Tensor

Build the computational graph for fitting net.
Parameters
inputs
The input descriptor

input_dict
Additional dict for inputs. if numb_fparam > 0, should have input_dict[‘fparam’]
if numb_aparam > 0, should have input_dict[‘aparam’]

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

ener
The system energy

change_energy_bias(data, frozen_model, origin type map, full type map, bias shift='delta’,
ntest=10) — None

Change the energy bias according to the input data and the pretrained model.
Parameters

data
[DeepmdDataSystem] The training data.

frozen_model
[str] The path file of frozen model.

origin type map
[1ist] The original type map in dataset, they are targets to change the energy bias.

full type map
[str] The full type map in pretrained model

266 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

bias_shift
[str] The mode for changing energy bias : [‘delta’, ‘statistic’] ‘delta’ : perform
predictions on energies of target dataset,

and do least sqaure on the errors to obtain the target shift as bias.

‘statistic’ : directly use the statistic energy bias in the target dataset.
ntest
[int] The number of test samples in a system to change the energy bias.
compute_input_stats(all stat: dict, protection: float = 0.01) — None
Compute the input statistics.

Parameters

all_stat

if numb_fparam > 0 must have all_stat[‘fparam’] if numb_aparam > 0 must have
all_stat[‘aparam’] can be prepared by model.make stat_input

protection
Divided-by-zero protection

compute_output_stats(all stat: dict, mixed type: bool = False) — None
Compute the ouput statistics.

Parameters

all_stat

must have the following components: all stat[‘energy’] of shape n_sys x n_batch
x n_frame can be prepared by model.make stat_input

mixed type
Whether to perform the mixed type mode. If True, the input data has the
mixed type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.
Parameters

mixed prec
The mixed precision setting used in the embedding net

get_numb_aparam() — int
Get the number of atomic parameters.

get_numb_fparam() — int
Get the number of frame parameters.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = /) — None
Init the fitting net variables with the given dict.

Parameters
graph
[tf.Graph] The input frozen model graph
graph_def
[tf.GraphDef] The input frozen model graph_def

17.1. deepmd package 267

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph

DeePMD-kit

suffix
[str]suffix to name scope

class deepmd.fit.GlobalPolarFittingSeA (descrpt: Tensor, neuron: List[int] = [120, 120, 120],
resnet_dt: bool = True, sel_type: List[int] | None = None,
fit_diag: bool = True, scale: List[float]| None = None,
diag_shift: List[float] | None = None, seed: int | None = None,
activation_function: str = ‘tanh’, precision: str = ‘default’)

Bases: object
Fit the system polarizability with descriptor se_a.
Parameters

descrpt
[tf.Tensor] The descrptor

neuron
[List[int]] Number of neurons in each hidden layer of the fitting net

resnet_dt
[bool] Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

sel type
[List[int]] The atom types selected to have an atomic polarizability prediction

fit_diag
[bool] Fit the diagonal part of the rotational invariant polarizability matrix, which
will be converted to normal polarizability matrix by contracting with the rotation
matrix.

scale
[List[float]] The output of the fitting net (polarizability matrix) for type i atom
will be scaled by scale[i]

diag_shift
[List[float]] The diagonal part of the polarizability matrix of type i will be shifted
by diag_shift[i]. The shift operation is carried out after scale.

seed
[int] Random seed for initializing the network parameters.

activation_function
[str] The activation function in the embedding net. Supported options are “relu”,
“relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
[str] The precision of the embedding net parameters. Supported options are “de-
fault”, “float16”, “float32”, “float64”, “bfloat16”.

268 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

Methods
busld(input_d, rot_mat, natoms, ...]) Build the computational graph for fitting net.
enable_mized_precision((mixed prec]) Reveive the mixed precision setting.
get_out_size() Get the output size.
get_sel_type() Get selected atom types.
init_variables(graph, graph_def[, suffix]) Init the fitting net variables with the given dict.

build(input_d, rot_mat, natoms, input_dict: dict | None = None, reuse=None, suffix="") — Tensor
Build the computational graph for fitting net.

Parameters

input_d
The input descriptor

rot_mat
The rotation matrix from the descriptor.

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

input_dict
Additional dict for inputs.

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

polar
The system polarizability

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.
Parameters

mixed prec
The mixed precision setting used in the embedding net

get_out_size() —int
Get the output size. Should be 9.

get_sel_type() — int
Get selected atom types.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str =) — None
Init the fitting net variables with the given dict.

Parameters

graph
[tf.Graph] The input frozen model graph

17.1. deepmd package 269

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph

DeePMD-kit

graph_def
[tf.GraphDef] The input frozen model graph_def

suffix
[str]suffix to name scope

class deepmd.fit.PolarFittingSeA(descrpt: Tensor, neuron: List[int] = [120, 120, 120], resnet_dt: bool
= True, sel_type: List[int] | None = None, fit_diag: bool = True,
scale: List[float] | None = None, shift_diag: bool = True, seed: int |
None = None, activation_function: str = ‘tanh’, precision: str =
'default’, uniform_seed: bool = False)

Bases: Fitting
Fit the atomic polarizability with descriptor se a.
Parameters

descrpt
[tf.Tensor] The descrptor

neuron
[List[int]] Number of neurons in each hidden layer of the fitting net

resnet_dt
[bool] Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

sel type
[List[int]] The atom types selected to have an atomic polarizability prediction. If
is None, all atoms are selected.

fit_diag
[bool] Fit the diagonal part of the rotational invariant polarizability matrix, which
will be converted to normal polarizability matrix by contracting with the rotation
matrix.

scale
[List[float]] The output of the fitting net (polarizability matrix) for type i atom
will be scaled by scale[i]

diag_shift
[List[float]] The diagonal part of the polarizability matrix of type i will be shifted
by diag_shift[i]. The shift operation is carried out after scale.

seed
[int] Random seed for initializing the network parameters.

activation_function
[str] The activation function in the embedding net. Supported options are “relu”,

99 [43

“relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
[str] The precision of the embedding net parameters. Supported options are “de-
fault”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

Attributes

precision
Precision of fitting network.

270 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

Methods
busld(input_d, rot_mat, natoms, ...]) Build the computational graph for fitting net.
compute_input_stats(all stat[, protection]) Compute the input statistics.
enable_mized_precision((mixed prec]) Reveive the mixed precision setting.
get_out_size() Get the output size.
get_sel_type() Get selected atom types.
init_variables(graph, graph_def[, suffix]) Init the fitting net variables with the given dict.

build (input_d: Tensor, rot_mat: Tensor, natoms: Tensor, input_dict: dict | None = None, reuse: bool
| None = None, suffix: str = ")

Build the computational graph for fitting net.
Parameters

input_d
The input descriptor

rot_mat
The rotation matrix from the descriptor.

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

input_dict
Additional dict for inputs.

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

atomic_polar
The atomic polarizability

compute_input_stats(all stat, protection=0.01)

Compute the input statistics.
Parameters

all_stat
Dictionary of inputs. can be prepared by model.make stat_input

protection
Divided-by-zero protection

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.
Parameters

mixed prec
The mixed precision setting used in the embedding net

17.1. deepmd package 271

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

DeePMD-kit

get_out_size() —int
Get the output size. Should be 9.

get_sel_type() — List[int]
Get selected atom types.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str =) — None
Init the fitting net variables with the given dict.

Parameters

graph
[tf.Graph] The input frozen model graph

graph_def
[tf.GraphDef] The input frozen model graph_def

suffix
[str] suffix to name scope

Submodules
deepmd.fit.dipole module

class deepmd.fit.dipole.DipoleFittingSeA (descrpt: Tensor, neuron: List[int] = [120, 120, 120],
resnet_dt: bool = True, sel_type: List[int] | None = None,
seed: int | None = None, activation_function: str = "tanh’,
precision: str = default’, uniform_seed: bool = False)

Bases: Fitting
Fit the atomic dipole with descriptor se_a.
Parameters

descrpt
[tf.Tensor] The descrptor

neuron
[List[int]] Number of neurons in each hidden layer of the fitting net

resnet_dt
[bool] Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

sel type
[List[int]] The atom types selected to have an atomic dipole prediction. If is None,
all atoms are selected.

seed
[int] Random seed for initializing the network parameters.

activation_function
[str] The activation function in the embedding net. Supported options are “relu”,
“relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

9

precision
[str] The precision of the embedding net parameters. Supported options are “de-
fault”, “float16”, “float32”, “float64”, “bfloat16”.

272 Chapter 17. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

Attributes

precision
Precision of fitting network.

Methods
bui ld(input_d, rot_mat, natoms], ...]) Build the computational graph for fitting net.
enable_mized_precision((mixed prec]) Reveive the mixed precision setting.
get_out_size() Get the output size.
get_sel_type() Get selected type.
init_variables(graph, graph def[, suffix]) Init the fitting net variables with the given dict.

build(input_d: Tensor, rot_mat: Tensor, natoms: Tensor, input_dict: dict | None = None, reuse: bool
| None = None, suffix: str = ") — Tensor

Build the computational graph for fitting net.
Parameters

input_d
The input descriptor

rot_mat
The rotation matrix from the descriptor.

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

input_dict
Additional dict for inputs.

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

dipole
The atomic dipole.

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.
Parameters

mixed prec
The mixed precision setting used in the embedding net

get_out_size() —int
Get the output size. Should be 3.

17.1. deepmd package 273

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

get_sel_type() — int
Get selected type.

init_variables(graph: Graph, graph def: GraphDef, suffix: str ="") — None
Init the fitting net variables with the given dict.

Parameters

graph
[tf.Graph] The input frozen model graph

graph_def
[tf.GraphDef] The input frozen model graph_def

suffix
[str]suffix to name scope

deepmd.fit.ener module

class deepmd.fit.ener.EnerFitting(descrpt: Tensor, neuron: List[int] = [120, 120, 120], resnet_dt: bool
= True, numb_fparam: int = 0, numb_aparam: int = 0, rcond:
float = 0.001, tot_ener_zero: bool = False, trainable: List[bool] |
None = None, seed: int | None = None, atom_ener: List[float] =[],
activation_function: str = ‘tanh’, precision: str = 'default’,
uniform_seed: bool = False, layer name: List[str | None] | None =
None, use_aparam_as_mask: bool = False)

Bases: Fitting
Fitting the energy of the system. The force and the virial can also be trained.

The potential energy F is a fitting network function of the descriptor D:
E(D) = L@ o =15 . 51,0
The first n hidden layers £, ... | £(»=1 are given by
y = L(x;w,b) = ¢p(xw + b)

where x € RM is the input vector and y € R™? is the output vector. w € RM*N2 and b € RM? are
weights and biases, respectively, both of which are trainable if trainable[i] is True. ¢ is the activation
function.

The output layer £(™ is given by
y =L (x;w,b) =xTw+Db
where x € RV»-1 is the input vector and y € R is the output scalar. w € RV»-1 and b € R are weights
and bias, respectively, both of which are trainable if trainable[n] is True.
Parameters

descrpt
The descrptor D

neuron
Number of neurons N in each hidden layer of the fitting net

resnet_dt
Time-step dt in the resnet construction: y = x + dt x ¢(Wx 4 b)

274 Chapter 17. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

DeePMD-kit

numb_fparam
Number of frame parameter

numb_aparam
Number of atomic parameter

rcond
The condition number for the regression of atomic energy.

tot_ener zero
Force the total energy to zero. Useful for the charge fitting.

trainable
If the weights of fitting net are trainable. Suppose that we have N; hidden layers in
the fitting net, this list is of length N; + 1, specifying if the hidden layers and the
output layer are trainable.

seed
Random seed for initializing the network parameters.

atom_ener
Specifying atomic energy contribution in vacuum. The set_davg zero key in the
descrptor should be set.

activation_function
The activation function ¢ in the embedding net. Supported options are “relu”,

99 [43 ”

“relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
The precision of the embedding net parameters. Supported options are “default”,
“float16”, “float32”, “float64”, “bfloat16”.

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

layer name
[list[Optional[str]], optional] The name of the each layer. If two layers, either
in the same fitting or different fittings, have the same name, they will share the same
neural network parameters.

use_aparam_as_mask: bool, optional
If True, the atomic parameters will be used as a mask that determines the atom is
real/virtual. And the aparam will not be used as the atomic parameters for embed-
ding.

Attributes

precision
Precision of fitting network.

17.1.

deepmd package 275

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

Methods
bus Ld(inputs, natoms[, input_dict, reuse, ...]) Build the computational graph for fitting net.
change_energy_bias(data, frozen model, ...) Change the energy bias according to the input

data and the pretrained model.

compute_input_stats(all stat[, protection]) Compute the input statistics.
compute_output_stats(all_stat], mixed type]) Compute the ouput statistics.
enable_mized_precision((mixed prec]) Reveive the mixed precision setting.
get_numb_aparam() Get the number of atomic parameters.
get_numb_ fparam() Get the number of frame parameters.
init_variables(graph, graph def[, suffix]) Init the fitting net variables with the given dict.

build (inputs: Tensor, natoms: Tensor, input_dict: dict | None = None, reuse: bool | None = None,
suffix: str = ") — Tensor

Build the computational graph for fitting net.
Parameters
inputs
The input descriptor

input_dict
Additional dict for inputs. if numb_fparam > 0, should have input_dict[‘fparam’]
if numb_aparam > 0, should have input_dict[‘aparam’]

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

ener
The system energy

change_energy_bias(data, frozen_model, origin type map, full type map, bias shift='delta’,
ntest=10) — None

Change the energy bias according to the input data and the pretrained model.
Parameters

data
[DeepmdDataSystem] The training data.

frozen_model
[str] The path file of frozen model.

origin type map
[1ist] The original type map in dataset, they are targets to change the energy bias.

full type map
[str] The full type map in pretrained model

276 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

bias_shift
[str] The mode for changing energy bias : [‘delta’, ‘statistic’] ‘delta’ : perform
predictions on energies of target dataset,

and do least sqaure on the errors to obtain the target shift as bias.

‘statistic’ : directly use the statistic energy bias in the target dataset.
ntest
[int] The number of test samples in a system to change the energy bias.
compute_input_stats(all stat: dict, protection: float = 0.01) — None
Compute the input statistics.

Parameters

all_stat

if numb_fparam > 0 must have all_stat[‘fparam’] if numb_aparam > 0 must have
all_stat[‘aparam’] can be prepared by model.make stat_input

protection
Divided-by-zero protection

compute_output_stats(all stat: dict, mixed type: bool = False) — None
Compute the ouput statistics.

Parameters

all_stat

must have the following components: all stat[‘energy’] of shape n_sys x n_batch
x n_frame can be prepared by model.make stat_input

mixed type
Whether to perform the mixed type mode. If True, the input data has the
mixed type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.
Parameters

mixed prec
The mixed precision setting used in the embedding net

get_numb_aparam() — int
Get the number of atomic parameters.

get_numb_fparam() — int
Get the number of frame parameters.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = /) — None
Init the fitting net variables with the given dict.

Parameters
graph
[tf.Graph] The input frozen model graph
graph_def
[tf.GraphDef] The input frozen model graph_def

17.1. deepmd package 277

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph

DeePMD-kit

suffix
[str]suffix to name scope

deepmd.fit.fitting module

class deepmd.fit.fitting.Fitting
Bases: object

Attributes

precision
Precision of fitting network.

Methods

init_variables(graph, graph def[, suffix]) Init the fitting net variables with the given dict.

init_variables(graph: Graph, graph_def: GraphDef, suffix: str = /) — None
Init the fitting net variables with the given dict.

Parameters

graph
[tf.Graph] The input frozen model graph

graph_def
[tf.GraphDef] The input frozen model graph_def

suffix
[str] suffix to name scope

Notes

This method is called by others when the fitting supported initialization from the given variables.

property precision: DType
Precision of fitting network.

deepmd.fit.polar module

class deepmd.fit.polar.GlobalPolarFittingSeA (descrpt: Tensor, neuron: List[int] = [120, 120, 120],

resnet_dt: bool = True, sel_type: List[int] | None =
None, fit_diag: bool = True, scale: List[float] | None
= None, diag_shift: List[float] | None = None, seed:
int | None = None, activation_function: str = "tanh’,
precision: str = 'default’)

Bases: object

Fit the system polarizability with descriptor se_a.

Parameters

278 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object

DeePMD-kit

descrpt
[tf.Tensor] The descrptor

neuron
[List[int]] Number of neurons in each hidden layer of the fitting net

resnet_dt
[bool] Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

sel type
[List[int]] The atom types selected to have an atomic polarizability prediction

fit_diag
[bool] Fit the diagonal part of the rotational invariant polarizability matrix, which
will be converted to normal polarizability matrix by contracting with the rotation
matrix.

scale
[List[float]] The output of the fitting net (polarizability matrix) for type i atom
will be scaled by scale[i]

diag_shift
[List[float]] The diagonal part of the polarizability matrix of type i will be shifted
by diag_shift[i]. The shift operation is carried out after scale.

seed
[int] Random seed for initializing the network parameters.

activation_function
[str] The activation function in the embedding net. Supported options are “relu”,
“relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
[str] The precision of the embedding net parameters. Supported options are “de-
fault”, “float16”, “float32”, “float64”, “bfloat16”.

Methods
bus ld(input_d, rot_mat, natomsy, ...]) Build the computational graph for fitting net.
enable_mized_precision((mixed prec]) Reveive the mixed precision setting.
get_out_size() Get the output size.
get_sel_type() Get selected atom types.
init_variables(graph, graph_def[, suffix]) Init the fitting net variables with the given dict.

build(input_d, rot_mat, natoms, input_dict: dict | None = None, reuse=None, suffix="") — Tensor
Build the computational graph for fitting net.

Parameters
input_d
The input descriptor

rot_mat
The rotation matrix from the descriptor.

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number

17.1. deepmd package 279

https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

DeePMD-kit

of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

input_dict
Additional dict for inputs.

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

polar
The system polarizability
enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.
Parameters

mixed_prec
The mixed precision setting used in the embedding net
get_out_size() — int
Get the output size. Should be 9.

get_sel_type() — int
Get selected atom types.

init_variables(graph: Graph, graph def: GraphDef, suffix: str ="") — None
Init the fitting net variables with the given dict.

Parameters

graph
[tf.Graph] The input frozen model graph

graph def
[tf.GraphDef] The input frozen model graph_def

suffix
[str]suffix to name scope

class deepmd.fit.polar.PolarFittingSeA (descrpt: Tensor, neuron: List[int] = [120, 120, 120],
resnet_dt: bool = True, sel_type: List[int] | None = None,
fit_diag: bool = True, scale: List[float] | None = None,
shift_diag: bool = True, seed: int | None = None,
activation_function: str = ‘tanh’, precision: str = 'default’,
uniform_seed: bool = False)

Bases: Fitting
Fit the atomic polarizability with descriptor se_a.
Parameters

descrpt
[tf.Tensor] The descrptor

neuron
[List[int]] Number of neurons in each hidden layer of the fitting net

280 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://www.tensorflow.org/api_docs/python/tf/Tensor
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

resnet_dt
[bool] Time-step dt in the resnet construction: y = x + dt * phi (Wx + b)

sel type
[List[int]] The atom types selected to have an atomic polarizability prediction. If
is None, all atoms are selected.

fit_diag
[bool] Fit the diagonal part of the rotational invariant polarizability matrix, which
will be converted to normal polarizability matrix by contracting with the rotation
matrix.

scale
[List[float]] The output of the fitting net (polarizability matrix) for type i atom
will be scaled by scale[i]

diag_shift
[List[float]] The diagonal part of the polarizability matrix of type i will be shifted
by diag_shift[i]. The shift operation is carried out after scale.

seed
[int] Random seed for initializing the network parameters.

activation_function
[str] The activation function in the embedding net. Supported options are “relu”,
“relu6”, “softplus”, “sigmoid”, “tanh”, “gelu”, “gelu_tf”, “None”, “none”.

precision
[str] The precision of the embedding net parameters. Supported options are “de-
fault”, “float16”, “float32”, “float64”, “bfloat16”.

uniform_seed
Only for the purpose of backward compatibility, retrieves the old behavior of using
the random seed

Attributes

precision
Precision of fitting network.

Methods
build(input_d, rot_mat, natoms], ...]) Build the computational graph for fitting net.
compute_input_stats(all stat[, protection]) Compute the input statistics.
enable_mized_precision((mixed prec]) Reveive the mixed precision setting.
get_out_size() Get the output size.
get_sel_type() Get selected atom types.
init_variables(graph, graph def[, suffix]) Init the fitting net variables with the given dict.

build(input_d: Tensor, rot_mat: Tensor, natoms: Tensor, input_dict: dict | None = None, reuse: bool
| None = None, suffix: str =)

Build the computational graph for fitting net.
Parameters

input_d
The input descriptor

17.1. deepmd package 281

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

rot_mat
The rotation matrix from the descriptor.

natoms

The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:

2 <=1 < Ntypes+2, number of type i atoms

input_dict
Additional dict for inputs.

reuse
The weights in the networks should be reused when get the variable.

suffix
Name suffix to identify this descriptor

Returns

atomic_polar
The atomic polarizability

compute_input_stats(all stat, protection=0.01)
Compute the input statistics.

Parameters

all stat
Dictionary of inputs. can be prepared by model.make stat_input

protection
Divided-by-zero protection

enable_mixed_precision(mixed prec: dict | None = None) — None

Reveive the mixed precision setting.
Parameters

mixed_prec
The mixed precision setting used in the embedding net

get_out_size() — int
Get the output size. Should be 9.

get_sel_type() — List[int]
Get selected atom types.
init_variables (graph: Graph, graph_def: GraphDef, suffix: str = /) — None
Init the fitting net variables with the given dict.
Parameters
graph
[tf.Graph] The input frozen model graph
graph def
[tf.GraphDef] The input frozen model graph_def

suffix
[str]suffix to name scope

282 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://www.tensorflow.org/api_docs/python/tf/Graph
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

deepmd.infer package

Submodule containing all the implemented potentials.

class deepmd.infer.DeepDipole(model file: Path, load prefix: str = load’, default tf graph: bool =
False)

Bases: DeepTensor
Constructor.
Parameters

model file
[Path] The name of the frozen model file.

load_prefix: str
The prefix in the load computational graph

default_tf graph
[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

Warning: For developers: DeepTensor initializer must be called at the end after self.tensors are
modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes

model_type
Get type of model.

model_version
Get version of model.

sess
Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])
eval_full(coords, cells, atom_types], ...])

eval_typeebd()

get_dim_aparam()
get_dim_fparam()
get_ntypes()
get_rcut()
get_sel_type()
get_type_map()

make_natoms_vec(atom_types[, mixed type])
reverse_map(vec, imap)

sort_input(coord, atom_type[, sel atoms, ...])

Evaluate the model.

Evaluate the model with interface similar to the
energy model.

Evaluate output of type embedding network by
using this model.

Unsupported in this model.

Unsupported in this model.

Get the number of atom types of this model.
Get the cut-off radius of this model.

Get the selected atom types of this model.

Get the type map (element name of the atom
types) of this model.

Make the natom vector used by deepmd-kit.
Reverse mapping of a vector according to the in-
dex map.

Sort atoms in the system according their types.

17.1.

deepmd package

283

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

DeePMD-kit

get_dim_aparam() — int
Unsupported in this model.

get_dim_fparam() — int
Unsupported in this model.

load_prefix: str

class deepmd.infer.DeepEval (model file: Path, load prefix: str = load’, default_tf graph: bool =
False, auto_batch_size: bool | int | AutoBatchSize = False)

Bases: object
Common methods for DeepPot, DeepWFC, DeepPolar, ...
Parameters

model file
[Path] The name of the frozen model file.

load_prefix: str
The prefix in the load computational graph

default tf graph
[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

auto_batch_size
[bool or int or AutomaticBatchSize, default: False] If True, automatic batch size
will be used. If int, it will be used as the initial batch size.

Attributes

model_type
Get type of model.

model_version
Get version of model.

Sess
Get TF session.
Methods

eval_typeedbd() Evaluate output of type embedding network by
using this model.

make_natoms_vec(atom_types[, mixed_type]) Make the natom vector used by deepmd-kit.

reverse_map(vec, imap) Reverse mapping of a vector according to the in-
dex map.

sort_input(coord, atom_type[, sel atoms, ...]) Sort atoms in the system according their types.

eval_typeebd() — ndarray
Evaluate output of type embedding network by using this model.
Returns

np.ndarray
The output of type embedding network. The shape is [ntypes, o_size], where ntypes
is the number of types, and o_size is the number of nodes in the output layer.

284 Chapter 17. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#False
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

DeePMD-kit

Raises

KeyError
If the model does not enable type embedding.

See also:

deepmd.utils.type_embed. TypeEmbedNet
The type embedding network.

Examples

Get the output of type embedding network of graph.pb:

>>> from deepmd.infer import DeepPotential
>>> dp = DeepPotential('graph.pb')
>>> dp.eval_typeebd()

load_prefix: str
make_natoms_vec(atom_types: ndarray, mixed type: bool = False) — ndarray
Make the natom vector used by deepmd-kit.
Parameters

atom_types
The type of atoms

mixed type
Whether to perform the mixed type mode. If True, the input data has the
mixed_type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

Returns

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

property model_type: str
Get type of model.

‘type:str
property model_version: str

Get version of model.
Returns

str
version of model

static reverse_map(vec: ndarray, imap: List[int]) — ndarray
Reverse mapping of a vector according to the index map.

Parameters

vec
Input vector. Be of shape [nframes, natoms, -1]

17.1. deepmd package 285

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

DeePMD-kit

imap
Index map. Be of shape [natoms]

Returns

vec_out
Reverse mapped vector.

property sess: Session
Get TF session.
static sort_input(coord: ndarray, atom type: ndarray, sel atoms: List[int] | None = None,
mixed type: bool = False)

Sort atoms in the system according their types.
Parameters

coord
The coordinates of atoms. Should be of shape [nframes, natoms, 3]

atom_type
The type of atoms Should be of shape [natoms]

sel atoms
The selected atoms by type

mixed_type
Whether to perform the mixed type mode. If True, the input data has the
mixed type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

Returns

coord_out
The coordinates after sorting

atom_type_out
The atom types after sorting

idx_map
The index mapping from the input to the output. For example coord out = co-
ord[:,idx_map,:]

sel_atom_type
Only output if sel atoms is not None The sorted selected atom types

sel_idx_map
Only output if sel atoms is not None The index mapping from the selected atoms
to sorted selected atoms.

class deepmd.infer.DeepGlobalPolar (model file: str,load prefix: str = ‘load’, default_tf graph: bool
= False)

Bases: DeepTensor
Constructor.
Parameters

model file
[str] The name of the frozen model file.

load_prefix: str
The prefix in the load computational graph

286 Chapter 17. Python API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

default_tf graph

[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

Attributes

model_type
Get type of model.

model_version
Get version of model.

sess
Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])
eval_full(coords, cells, atom_types], ...])

eval_typeebd()

get_dim_aparam()
get_dim_fparam()
get_ntypes()
get_rcut()
get_sel_type()
get_type_map()

make_natoms_vec(atom_types[, mixed type])
reverse_map(vec, imap)

sort_input(coord, atom_type[, sel atoms, ...])

Evaluate the model.

Evaluate the model with interface similar to the
energy model.

Evaluate output of type embedding network by
using this model.

Unsupported in this model.

Unsupported in this model.

Get the number of atom types of this model.
Get the cut-off radius of this model.

Get the selected atom types of this model.

Get the type map (element name of the atom
types) of this model.

Make the natom vector used by deepmd-kit.
Reverse mapping of a vector according to the in-
dex map.

Sort atoms in the system according their types.

eval (coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: ndarray |
None = None, aparam: ndarray | None = None, efield: ndarray | None = None) — ndarray

Evaluate the model.
Parameters

coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The

array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

atomic
Not used in this model

fparam
Not used in this model

aparam
Not used in this model

17.1. deepmd package

287

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

DeePMD-kit

efield
Not used in this model

Returns

tensor

The returned tensor If atomic == False then of size nframes x variable_dof else of
size nframes x natoms x variable dof

get_dim_aparam() — int
Unsupported in this model.

get_dim_fparam() — int
Unsupported in this model.

load_prefix: str

class deepmd.infer.DeepPolar(model file: Path, load prefix: str = ‘load’, default_tf graph: bool =
False)

Bases: DeepTensor
Constructor.
Parameters
model file
[Path] The name of the frozen model file.

load prefix: str
The prefix in the load computational graph

default_tf graph
[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

Warning: For developers: DeepTensor initializer must be called at the end after self.tensors are
modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes

model_type
Get type of model.

model_version
Get version of model.

sess
Get TF session.

288 Chapter 17. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

DeePMD-kit

Methods

eval(coords, cells, atom_types[, atomic, ...])
eval_full(coords, cells, atom types[, ...])

eval_typeebd()

get_dim_aparam()
get_dim_fparam()
get_ntypes()
get_rcut()
get_sel_type()
get_type_map()

make_natoms_vec(atom_types[, mixed type])
reverse_map(vec, imap)

sort_input(coord, atom_type[, sel atoms, ...])

Evaluate the model.

Evaluate the model with interface similar to the
energy model.

Evaluate output of type embedding network by
using this model.

Unsupported in this model.

Unsupported in this model.

Get the number of atom types of this model.
Get the cut-off radius of this model.

Get the selected atom types of this model.

Get the type map (element name of the atom
types) of this model.

Make the natom vector used by deepmd-kit.
Reverse mapping of a vector according to the in-
dex map.

Sort atoms in the system according their types.

get_dim_aparam() — int
Unsupported in this model.

get_dim_fparam() — int
Unsupported in this model.

load_prefix: str

class deepmd.infer.DeepPot (model file: Path, load prefix: str = ‘load’, default_tf graph: bool = False,

auto_batch_size: bool | int | AutoBatchSize = True)

Bases: DeepEval
Constructor.
Parameters

model _file

[Path] The name of the frozen model file.

load prefix: str

The prefix in the load computational graph

default_tf graph

[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

auto_batch_size

[bool or int or AutomaticBatchSize, default: True] If True, automatic batch size
will be used. If int, it will be used as the initial batch size.

Warning: For developers: DeepTensor initializer must be called at the end after self.tensors are
modified because it uses the data in self.tensors dict. Do not chanage the order!

17.1. deepmd package

289

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True

DeePMD-kit

Examples

>>> from deepmd.infer import DeepPot

>>> import numpy as np

>>> dp = DeepPot('graph.pb')

>>> coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1])
>>> cell = np.diag(10 * np.ones(3)).reshape([1, -1])

>>> atype = [1,0,1]

>>> e, f, v = dp.eval(coord, cell, atype)

where e, f and v are predicted energy, force and virial of the system, respectively.
Attributes

model_type
Get type of model.

model_version
Get version of model.

sess
Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...]) Evaluate the energy, force and virial by using
this DP.
eval_descriptor(coords, cells, atom_types[, FEvaluate descriptors by using this DP.

g

eval_typeebd() Evaluate output of type embedding network by
using this model.

get_dim_aparam() Get the number (dimension) of atomic parame-
ters of this DP.

get_dim_fparam() Get the number (dimension) of frame parame-
ters of this DP.

get_ntypes() Get the number of atom types of this model.

get_rcut() Get the cut-off radius of this model.

get_sel_type() Unsupported in this model.

get_type_map() Get the type map (element name of the atom
types) of this model.

make_natoms_vec(atom_types[, mixed type]) Make the natom vector used by deepmd-kit.

reverse_map(vec, imap) Reverse mapping of a vector according to the in-
dex map.

sort_input(coord, atom_type[, sel atoms, ...]) Sort atoms in the system according their types.

eval (coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: ndarray |
None = None, aparam: ndarray | None = None, efield: ndarray | None = None, mixed_type:
bool = False) — Tuple[ndarray, ...]

Evaluate the energy, force and virial by using this DP.
Parameters

coords
The coordinates of atoms. The array should be of size nframes x natoms x 3

290 Chapter 17. Python API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

DeePMD-kit

cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The
array should be of size nframes x 9

atom_types
The atom types The list should contain natoms ints

atomic
Calculate the atomic energy and virial

fparam
The frame parameter. The array can be of size : - nframes x dim_fparam. -
dim_fparam. Then all frames are assumed to be provided with the same fparam.

aparam
The atomic parameter The array can be of size : - nframes x natoms x dim_aparam.
-natoms x dim_aparam. Then all frames are assumed to be provided with the same
aparam. - dim_aparam. Then all frames and atoms are provided with the same
aparam.

efield
The external field on atoms. The array should be of size nframes x natoms x 3
mixed type
Whether to perform the mixed type mode. If True, the input data has the
mixed type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

Returns

energy
The system energy.

force
The force on each atom

virial
The virial

atom_energy
The atomic energy. Only returned when atomic == True

atom_virial
The atomic virial. Only returned when atomic == True
eval_descriptor (coords: ndarray, cells: ndarray, atom_types: List[int], fparam: ndarray | None =
None, aparam: ndarray | None = None, efield: ndarray | None = None,
mixed_type: bool = False) — array

Evaluate descriptors by using this DP.
Parameters

coords
The coordinates of atoms. The array should be of size nframes x natoms x 3

cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The
array should be of size nframes x 9

atom_types
The atom types The list should contain natoms ints

17.1. deepmd package 291

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

DeePMD-kit

fparam
The frame parameter. The array can be of size : - nframes x dim_fparam. -
dim_fparam. Then all frames are assumed to be provided with the same fparam.

aparam
The atomic parameter The array can be of size : - nframes x natoms x dim_aparam.
-natoms x dim_aparam. Then all frames are assumed to be provided with the same
aparam. - dim_aparam. Then all frames and atoms are provided with the same
aparam.

efield
The external field on atoms. The array should be of size nframes x natoms x 3

mixed type
Whether to perform the mixed type mode. If True, the input data has the
mixed_type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

Returns

descriptor
Descriptors.

get_dim_aparam() — int

Get the number (dimension) of atomic parameters of this DP.
get_dim_fparam() — int

Get the number (dimension) of frame parameters of this DP.
get_ntypes() — int

Get the number of atom types of this model.
get_rcut () — float

Get the cut-off radius of this model.
get_sel_type() — List[int]

Unsupported in this model.
get_type_map() — List[str]

Get the type map (element name of the atom types) of this model.
load_prefix: str

deepmd.infer.DeepPotential (model file: str| Path, load prefix: str = ‘load’, default_tf graph: bool =
False) — DeepDipole | DeepGlobalPolar | DeepPolar | DeepPot | DeepWFC

Factory function that will inialize appropriate potential read from model file.
Parameters

model file
[str] The name of the frozen model file.

load_prefix
[str] The prefix in the load computational graph

default_tf graph
[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

Returns

Union[DeepDipole, DeepGlobalPolar, DeepPolar, DeepPot, DeepWFC]
one of the available potentials

292 Chapter 17. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/typing.html#typing.Union

DeePMD-kit

Raises

RuntimeError
if model file does not correspond to any implementd potential

class deepmd.infer.DeepWFC(model file: Path, load prefix: str = ‘load’, default_tf graph: bool = False)

Bases: DeepTensor
Constructor.
Parameters

model file
[Path] The name of the frozen model file.

load_prefix: str
The prefix in the load computational graph

default tf graph
[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

Warning: For developers: DeepTensor initializer must be called at the end after self.tensors are
modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes

model_type
Get type of model.

model_version
Get version of model.

sess
Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])
eval_full(coords, cells, atom_types], ...])

eval_typeebd()

get_dim_aparam()
get_dim_fparam()
get_ntypes()
get_rcut()
get_sel_type()
get_type_map()

make_natoms_vec(atom_types[, mixed type])
reverse_map(vec, imap)

sort_input(coord, atom_type[, sel atoms, ...])

Evaluate the model.

Evaluate the model with interface similar to the
energy model.

Evaluate output of type embedding network by
using this model.

Unsupported in this model.

Unsupported in this model.

Get the number of atom types of this model.
Get the cut-off radius of this model.

Get the selected atom types of this model.

Get the type map (element name of the atom
types) of this model.

Make the natom vector used by deepmd-kit.
Reverse mapping of a vector according to the in-
dex map.

Sort atoms in the system according their types.

17.1.

deepmd package

293

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

DeePMD-kit

get_dim_aparam() — int
Unsupported in this model.

get_dim_fparam() — int
Unsupported in this model.

load_prefix: str

class deepmd.infer.DipoleChargeModifier (model name: str, model charge map: List[float],
sys_charge map: List[float], ewald h: float =1,
ewald beta: float = 1)
Bases: DeepDipole

Parameters
model name
The model file for the DeepDipole model

model _charge map
Gives the amount of charge for the wfcc
sys_charge map
Gives the amount of charge for the real atoms
ewald h
Grid spacing of the reciprocal part of Ewald sum. Unit: A
ewald beta
Splitting parameter of the Ewald sum. Unit: A*{-1}
Attributes

model_type
Get type of model.

model_version
Get version of model.

sess
Get TF session.

294 Chapter 17. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

DeePMD-kit

Methods

build_fv_graph()

eval(coord, box, atype[, eval fv])
eval_full(coords, cells, atom_types], ...])

eval_typeebd()

get_dim_aparam()

get_dim_fparam()

get_ntypes()

get_rcut()

get_sel_type()

get_type_map()
make_natoms_vec(atom_types[, mixed type])
modify_data(data)

reverse_map(vec, imap)

sort_input(coord, atom_type[, sel atoms, ...])

Build the computational graph for the force and
virial inference.

Evaluate the modification.

Evaluate the model with interface similar to the
energy model.

Evaluate output of type embedding network by
using this model.

Unsupported in this model.

Unsupported in this model.

Get the number of atom types of this model.
Get the cut-off radius of this model.

Get the selected atom types of this model.

Get the type map (element name of the atom
types) of this model.

Make the natom vector used by deepmd-kit.
Modify data.

Reverse mapping of a vector according to the in-
dex map.

Sort atoms in the system according their types.

build_fv_graph() — Tensor

Build the computational graph for the force and virial inference.

eval (coord: ndarray, box: ndarray, atype: ndarray, eval fv: bool = True) — Tuple[ndarray,

ndarray, ndarray]
Evaluate the modification.
Parameters

coord
The coordinates of atoms

box

The simulation region. PBC is assumed

atype
The atom types

eval fv
Evaluate force and virial

Returns

tot_e
The energy modification

tot_f
The force modification

tot_v
The virial modification

load_prefix: str

17.1. deepmd package

295

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str

DeePMD-kit

modify_data(data: dict) — None
Modify data.

Parameters

data
Internal data of DeepmdData. Be a dict, has the following keys - coord coordi-
nates - box simulation box - type atom types - find_energy tells if data has energy
- find_force tells if data has force - find_virial tells if data has virial - energy energy
- force force - virial virial

class deepmd.infer.EwaldRecp(hh, beta)
Bases: object

Evaluate the reciprocal part of the Ewald sum.

Methods

eval(coord, charge, box) Evaluate.

eval (coord: ndarray, charge: ndarray, box: ndarray) — Tuple[ndarray, ndarray, ndarray]
Evaluate.

Parameters

coord
The coordinates of atoms

charge
The atomic charge

box
The simulation region. PBC is assumed

Returns

e
The energy

The force

The virial
deepmd.infer.calc_model_devi(coord, box, atype, models, fname=None, frequency=1)
Python interface to calculate model deviation.
Parameters

coord
[numpy .ndarray, n_frames x n_atoms x 3] Coordinates of system to calculate

box

[numpy .ndarray or None, n_frames x 3 x 3] Box to specify periodic boundary condi-
tion. If None, no pbc will be used

atype
[numpy .ndarray, n_atoms x 1] Atom types

296 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

DeePMD-kit

models
[1list of DeepPot models] Models used to evaluate deviation

fname
[str or None] File to dump results, default None

frequency
[int] Steps between frames (if the system is given by molecular dynamics engine),
default 1

Returns

model devi
[numpy.ndarray, n_frames x 7] Model deviation results. The first column is index of
steps, the other 6 columns are max devi_v, min_devi v, avg _devi v, max devi f,
min_devi_f, avg devi f.

Examples

>>> from deepmd.infer import calc_model_devi

>>> from deepmd.infer import DeepPot as DP

>>> import numpy as np

>>> coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1])
>>> cell = np.diag(10 * np.ones(3)).reshape([1, -1])

>>> atype = [1,0,1]

>>> graphs = [DP("graph.000.pb"), DP("graph.001.pb")]

>>> model_devi = calc_model_devi(coord, cell, atype, graphs)

Submodules
deepmd.infer.data_modifier module

class deepmd.infer.data_modifier.DipoleChargeModifier (model name: str, model charge map:
List[float], sys_charge map: List[float],
ewald h: float = 1, ewald beta: float = 1)

Bases: DeepDipole
Parameters

model name
The model file for the DeepDipole model

model _charge map
Gives the amount of charge for the wfcc

sys_charge map
Gives the amount of charge for the real atoms

ewald h
Grid spacing of the reciprocal part of Ewald sum. Unit: A

ewald beta
Splitting parameter of the Ewald sum. Unit: A*{-1}

Attributes

17.1. deepmd package 297

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

DeePMD-kit

model_type
Get type of model.

model_version
Get version of model.

sess
Get TF session.

Methods

build_fv_graph()

eval(coord, box, atype[, eval fv])
eval_full(coords, cells, atom_types], ...])

eval_typeebd()

get_dim_aparam()
get_dim_fparam()
get_ntypes()
get_rcut()
get_sel_type()
get_type_map()

make_natoms_vec(atom_types[, mixed type])

modi fy_data(data)
reverse_map(vec, imap)

sort_input(coord, atom_type[, sel atoms, ...])

Build the computational graph for the force and
virial inference.

Evaluate the modification.

Evaluate the model with interface similar to the
energy model.

Evaluate output of type embedding network by
using this model.

Unsupported in this model.

Unsupported in this model.

Get the number of atom types of this model.
Get the cut-off radius of this model.

Get the selected atom types of this model.

Get the type map (element name of the atom
types) of this model.

Make the natom vector used by deepmd-kit.
Modify data.

Reverse mapping of a vector according to the in-
dex map.

Sort atoms in the system according their types.

build_fv_graph() — Tensor

Build the computational graph for the force and virial inference.

eval (coord: ndarray, box: ndarray, atype: ndarray, eval fv: bool = True) — Tuple[ndarray,

ndarray, ndarray]
Evaluate the modification.
Parameters

coord
The coordinates of atoms

box

The simulation region. PBC is assumed

atype
The atom types

eval fv
Evaluate force and virial

Returns

tot_e
The energy modification

298

Chapter 17. Python API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

DeePMD-kit

tot_f
The force modification

tot_v
The virial modification

load_prefix: str

modify_data(data: dict) — None
Modify data.

Parameters

data

Internal data of DeepmdData. Be a dict, has the following keys - coord coordi-
nates - box simulation box - type atom types - find_energy tells if data has energy
- find_force tells if data has force - find_virial tells if data has virial - energy energy
- force force - virial virial

deepmd.infer.deep_dipole module

class deepmd.infer.deep_dipole.DeepDipole(model file: Path, load prefix: str = "load’,
default_tf graph: bool = False)

Bases: DeepTensor
Constructor.
Parameters

model file
[Path] The name of the frozen model file.

load_prefix: str
The prefix in the load computational graph

default_tf graph
[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

Warning: For developers: DeepTensor initializer must be called at the end after self.tensors are
modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes

model_type
Get type of model.

model_version
Get version of model.

sess
Get TF session.

17.1. deepmd package 299

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

DeePMD-kit

Methods

eval(coords, cells, atom_types[, atomic, ...])
eval_full(coords, cells, atom types[, ...])

eval_typeebd()

get_dim_aparam()
get_dim_fparam()
get_ntypes()
get_rcut()
get_sel_type()
get_type_map()

make_natoms_vec(atom_types[, mixed type])
reverse_map(vec, imap)

sort_input(coord, atom_type[, sel atoms, ...])

Evaluate the model.

Evaluate the model with interface similar to the
energy model.

Evaluate output of type embedding network by
using this model.

Unsupported in this model.

Unsupported in this model.

Get the number of atom types of this model.
Get the cut-off radius of this model.

Get the selected atom types of this model.

Get the type map (element name of the atom
types) of this model.

Make the natom vector used by deepmd-kit.
Reverse mapping of a vector according to the in-
dex map.

Sort atoms in the system according their types.

get_dim_aparam() — int
Unsupported in this model.

get_dim_fparam() — int
Unsupported in this model.

load_prefix: str

deepmd.infer.deep_eval module

class deepmd.infer.deep_eval.DeepEval (model file: Path, load prefix: str = 'load’, default_tf graph:

bool = False, auto_batch_size: bool | int | AutoBatchSize =

False)

Bases: object

Common methods for DeepPot, DeepWFC, DeepPolar, ...

Parameters

model file

[Path] The name of the frozen model file.

load prefix: str

The prefix in the load computational graph

default_tf graph

[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

auto_batch_size

[bool or int or AutomaticBatchSize, default: False] If True, automatic batch size
will be used. If int, it will be used as the initial batch size.

Attributes

model_type
Get type of model.

Chapter 17. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#False

DeePMD-kit

model_version
Get version of model.

Sess
Get TF session.

Methods
eval_typeedbd() Evaluate output of type embedding network by
using this model.
make_natoms_vec(atom_types[, mixed type]) Make the natom vector used by deepmd-kit.
reverse_map(vec, imap) Reverse mapping of a vector according to the in-
dex map.

sort_input(coord, atom_type[, sel atoms, ...]) Sort atoms in the system according their types.

eval_typeebd() — ndarray
Evaluate output of type embedding network by using this model.

Returns

np.ndarray
The output of type embedding network. The shapeis[ntypes, o_size], where ntypes
is the number of types, and o_size is the number of nodes in the output layer.

Raises

KeyError
If the model does not enable type embedding.

See also:

deepmd.utils.type_embed. TypeEmbedNet
The type embedding network.

Examples

Get the output of type embedding network of graph.pb:

>>> from deepmd.infer import DeepPotential
>>> dp = DeepPotential('graph.pb')
>>> dp.eval_typeebd()

load_prefix: str

make_natoms_vec(atom_types: ndarray, mixed type: bool = False) — ndarray

Make the natom vector used by deepmd-kit.
Parameters

atom_types
The type of atoms

mixed_type
Whether to perform the mixed type mode. If True, the input data has the
mixed type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

17.1. deepmd package 301

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

DeePMD-kit

Returns

natoms
The number of atoms. This tensor has the length of Ntypes + 2 natoms[0]: number
of local atoms natoms[1]: total number of atoms held by this processor natoms[i]:
2 <=1 < Ntypes+2, number of type i atoms

property model_type: str
Get type of model.

‘type:str
property model_version: str

Get version of model.
Returns

str
version of model

static reverse_map(vec: ndarray, imap: List[int]) — ndarray
Reverse mapping of a vector according to the index map.
Parameters

vec
Input vector. Be of shape [nframes, natoms, -1]

imap
Index map. Be of shape [natoms]

Returns

vec_out
Reverse mapped vector.

property sess: Session

Get TF session.

static sort_input(coord: ndarray, atom_type: ndarray, sel atoms: List[int] | None = None,
mixed_type: bool = False)

Sort atoms in the system according their types.
Parameters

coord
The coordinates of atoms. Should be of shape [nframes, natoms, 3]

atom_type
The type of atoms Should be of shape [natoms]

sel atoms
The selected atoms by type

mixed type
Whether to perform the mixed type mode. If True, the input data has the

mixed_type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

Returns

coord_out
The coordinates after sorting

302 Chapter 17. Python API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

DeePMD-kit

atom_type_out
The atom types after sorting

idx_map
The index mapping from the input to the output. For example coord out = co-
ord[:,idx_map,:]

sel_atom_type
Only output if sel atoms is not None The sorted selected atom types

sel_idx_map
Only output if sel atoms is not None The index mapping from the selected atoms
to sorted selected atoms.

deepmd.infer.deep_polar module

class deepmd.infer.deep_polar.DeepGlobalPolar (model file: str,load prefix: str = "load’,
default_tf graph: bool = False)

Bases: DeepTensor
Constructor.
Parameters

model file
[str] The name of the frozen model file.

load prefix: str
The prefix in the load computational graph

default_tf graph
[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

Attributes

model_type
Get type of model.

model_version
Get version of model.

sess
Get TF session.

17.1. deepmd package 303

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

DeePMD-kit

Methods

eval(coords, cells, atom_types[, atomic, ...]) Evaluate the model.

eval_full(coords, cells, atom types[, ...]) Evaluate the model with interface similar to the
energy model.

eval_typeebd() Evaluate output of type embedding network by
using this model.

get_dim_aparam() Unsupported in this model.

get_dim_fparam() Unsupported in this model.

get_ntypes() Get the number of atom types of this model.

get_rcut() Get the cut-off radius of this model.

get_sel_type() Get the selected atom types of this model.

get_type_map() Get the type map (element name of the atom
types) of this model.

make_natoms_vec(atom_types[, mixed type]) Make the natom vector used by deepmd-kit.

reverse_map(vec, imap) Reverse mapping of a vector according to the in-
dex map.

sort_input(coord, atom_type[, sel atoms, ...]) Sort atoms in the system according their types.

eval (coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: ndarray |
None = None, aparam: ndarray | None = None, efield: ndarray | None = None) — ndarray

Evaluate the model.
Parameters

coords
The coordinates of atoms. The array should be of size nframes x natoms x 3

cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The
array should be of size nframes x 9

atom_types
The atom types The list should contain natoms ints

atomic
Not used in this model

fparam
Not used in this model

aparam
Not used in this model

efield
Not used in this model

Returns

tensor
The returned tensor If atomic == False then of size nframes x variable_dof else of
size nframes x natoms x variable_dof
get_dim_aparam() — int
Unsupported in this model.

304 Chapter 17. Python API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

DeePMD-kit

get_dim_fparam() — int
Unsupported in this model.

load_prefix: str

class deepmd.infer.deep_polar.DeepPolar(model file: Path, load prefix: str = load’,
default_tf graph: bool = False)

Bases: DeepTensor
Constructor.
Parameters

model file

[Path] The name of the frozen model file.

load_prefix: str

The prefix in the load computational graph

default tf graph

[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

Warning: For developers: DeepTensor initializer must be called at the end after self.tensors are
modified because it uses the data in self.tensors dict. Do not chanage the order!

Attributes

model_type
Get type of model.

model_version
Get version of model.

sess
Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])
eval_full(coords, cells, atom_types], ...])

eval_typeebd()

get_dim_aparam()
get_dim_fparam()
get_ntypes()
get_rcut()
get_sel_type()
get_type_map()

make_natoms_vec(atom_types[, mixed type])
reverse_map(vec, imap)

sort_input(coord, atom_type[, sel atoms, ...])

Evaluate the model.

Evaluate the model with interface similar to the
energy model.

Evaluate output of type embedding network by
using this model.

Unsupported in this model.

Unsupported in this model.

Get the number of atom types of this model.
Get the cut-off radius of this model.

Get the selected atom types of this model.

Get the type map (element name of the atom
types) of this model.

Make the natom vector used by deepmd-kit.
Reverse mapping of a vector according to the in-
dex map.

Sort atoms in the system according their types.

17.1.

deepmd package

305

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

DeePMD-kit

get_dim_aparam() — int
Unsupported in this model.

get_dim_fparam() — int
Unsupported in this model.

load_prefix: str

deepmd.infer.deep__pot module

class deepmd.infer.deep_pot.DeepPot (model file: Path, load prefix: str = ‘load’, default_tf graph:
bool = False, auto_batch_size: bool | int | AutoBatchSize =
True)

Bases: DeepEval
Constructor.
Parameters

model file
[Path] The name of the frozen model file.

load_prefix: str
The prefix in the load computational graph

default_tf graph
[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

auto_batch_size
[bool or int or AutomaticBatchSize, default: True] If True, automatic batch size
will be used. If int, it will be used as the initial batch size.

Warning: For developers: DeepTensor initializer must be called at the end after self.tensors are
modified because it uses the data in self.tensors dict. Do not chanage the order!

Examples

>>> from deepmd.infer import DeepPot

>>> import numpy as np

>>> dp = DeepPot('graph.pb')

>>> coord = np.array([[1,0,0], [0,0,1.5], [1,0,3]]).reshape([1, -1])
>>> cell = np.diag(10 * np.ones(3)).reshape([1, -1])

>>> atype = [1,0,1]

>>> e, f, v = dp.eval(coord, cell, atype)

where e, f and v are predicted energy, force and virial of the system, respectively.
Attributes

model_type
Get type of model.

model_version
Get version of model.

306 Chapter 17. Python API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#True

DeePMD-kit

sess
Get TF session.

Methods

eval(coords, cells, atom_types[, atomic, ...])

eval_descriptor(coords, cells, atom_types[,

)
eval_typeebd()
get_dim_aparam()

get_dim_fparam()

get_ntypes()
get_rcut()
get_sel_type()
get_type_map()

make_natoms_vec(atom_types[, mixed type])
reverse_map(vec, imap)

sort_input(coord, atom_type[, sel atoms, ...])

Evaluate the energy, force and virial by using
this DP.
Evaluate descriptors by using this DP.

Evaluate output of type embedding network by
using this model.

Get the number (dimension) of atomic parame-
ters of this DP.

Get the number (dimension) of frame parame-
ters of this DP.

Get the number of atom types of this model.
Get the cut-off radius of this model.
Unsupported in this model.

Get the type map (element name of the atom
types) of this model.

Make the natom vector used by deepmd-kit.
Reverse mapping of a vector according to the in-
dex map.

Sort atoms in the system according their types.

eval (coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = False, fparam: ndarray |
None = None, aparam: ndarray | None = None, efield: ndarray | None = None, mixed_type:

bool = False) — Tuple[ndarray, ...]

Evaluate the energy, force and virial by using this DP.

Parameters

coords

The coordinates of atoms. The array should be of size nframes x natoms x 3

cells

The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The

array should be of size nframes x 9

atom_types

The atom types The list should contain natoms ints

atomic

Calculate the atomic energy and virial

fparam

The frame parameter. The array can be of size : - nframes x dim_fparam. -
dim_fparam. Then all frames are assumed to be provided with the same fparam.

aparam
The atomic parameter The array can be of size : - nframes x natoms x dim_aparam.
-natoms x dim_aparam. Then all frames are assumed to be provided with the same
aparam. - dim_aparam. Then all frames and atoms are provided with the same
aparam.

17.1. deepmd package 307

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

DeePMD-kit

efield
The external field on atoms. The array should be of size nframes x natoms x 3

mixed type
Whether to perform the mixed type mode. If True, the input data has the
mixed_type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

Returns

energy
The system energy.

force

The force on each atom
virial

The virial

atom_energy
The atomic energy. Only returned when atomic == True

atom_virial
The atomic virial. Only returned when atomic == True

eval_descriptor (coords: ndarray, cells: ndarray, atom_types: List[int], fparam: ndarray | None =
None, aparam: ndarray | None = None, efield: ndarray | None = None,
mixed type: bool = False) — array

Evaluate descriptors by using this DP.
Parameters

coords
The coordinates of atoms. The array should be of size nframes x natoms x 3

cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The
array should be of size nframes x 9

atom_types
The atom types The list should contain natoms ints

fparam
The frame parameter. The array can be of size : - nframes x dim_fparam. -
dim_fparam. Then all frames are assumed to be provided with the same fparam.

aparam
The atomic parameter The array can be of size : - nframes x natoms x dim_aparam.
-natoms x dim_aparam. Then all frames are assumed to be provided with the same
aparam. - dim_aparam. Then all frames and atoms are provided with the same
aparam.

efield
The external field on atoms. The array should be of size nframes x natoms x 3

mixed type
Whether to perform the mixed type mode. If True, the input data has the
mixed type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

Returns

308 Chapter 17. Python API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

DeePMD-kit

descriptor
Descriptors.

get_dim_aparam() — int

Get the number (dimension) of atomic parameters of this DP.
get_dim_fparam() — int

Get the number (dimension) of frame parameters of this DP.
get_ntypes() — int

Get the number of atom types of this model.

get_rcut () — float
Get the cut-off radius of this model.

get_sel_type() — List[int]
Unsupported in this model.
get_type_map() — List[str]
Get the type map (element name of the atom types) of this model.

load_prefix: str

deepmd.infer.deep__tensor module

class deepmd.infer.deep_tensor.DeepTensor (model file: Path, load prefix: str = "load’,
default_tf graph: bool = False)

Bases: DeepEval
Evaluates a tensor model.
Parameters

model file: str
The name of the frozen model file.

load_prefix: str
The prefix in the load computational graph

default_tf graph
[bool] If uses the default tf graph, otherwise build a new tf graph for evaluation

Attributes

model_type
Get type of model.

model_version
Get version of model.

sess
Get TF session.

17.1. deepmd package 309

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

DeePMD-kit

Methods

eval(coords, cells, atom_types[, atomic, ...]) Evaluate the model.

eval_full(coords, cells, atom_types], ...]) Evaluate the model with interface similar to the
energy model.

eval_typeebd() Evaluate output of type embedding network by
using this model.

get_dim_aparam() Get the number (dimension) of atomic parame-
ters of this DP.

get_dim_fparam() Get the number (dimension) of frame parame-
ters of this DP.

get_ntypes() Get the number of atom types of this model.

get_rcut() Get the cut-off radius of this model.

get_sel_type() Get the selected atom types of this model.

get_type_map() Get the type map (element name of the atom
types) of this model.

make_natoms_vec(atom_types[, mixed type]) Make the natom vector used by deepmd-kit.

reverse_map(vec, imap) Reverse mapping of a vector according to the in-
dex map.

sort_input(coord, atom_type[, sel atoms, ...]) Sort atoms in the system according their types.

eval (coords: ndarray, cells: ndarray, atom_types: List[int], atomic: bool = True, fparam: ndarray |
None = None, aparam: ndarray | None = None, efield: ndarray | None = None, mixed_type:
bool = False) — ndarray

Evaluate the model.
Parameters

coords
The coordinates of atoms. The array should be of size nframes x natoms x 3

cells
The cell of the region. If None then non-PBC is assumed, otherwise using PBC. The
array should be of size nframes x 9

atom_types
The atom types The list should contain natoms ints

atomic
If True (default), return the atomic tensor Otherwise return the global tensor

fparam
Not used in this model

aparam
Not used in this model

efield
Not used in this model

mixed type
Whether to perform the mixed type mode. If True, the input data has the
mixed_type format (see doc/model/train_se atten.md), in which frames in a sys-
tem may have different natoms_vec(s), with the same nloc.

Returns

310 Chapter 17. Python API

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.nd